-
Je něco špatně v tomto záznamu ?
Timing matters for accurate identification of the epileptogenic zone
B. Chybowski, P. Klimes, J. Cimbalnik, V. Travnicek, P. Nejedly, M. Pail, L. Peter-Derex, J. Hall, F. Dubeau, P. Jurak, M. Brazdil, B. Frauscher
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- časové faktory MeSH
- dospělí MeSH
- elektroencefalografie * metody MeSH
- elektrokortikografie metody normy MeSH
- epilepsie * patofyziologie diagnóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozek patofyziologie MeSH
- stadia spánku fyziologie MeSH
- strojové učení * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: Interictal biomarkers of the epileptogenic zone (EZ) and their use in machine learning models open promising avenues for improvement of epilepsy surgery evaluation. Currently, most studies restrict their analysis to short segments of intracranial EEG (iEEG). METHODS: We used 2381 hours of iEEG data from 25 patients to systematically select 5-minute segments across various interictal conditions. Then, we tested machine learning models for EZ localization using iEEG features calculated within these individual segments or across them and evaluated the performance by the area under the precision-recall curve (PRAUC). RESULTS: On average, models achieved a score of 0.421 (the result of the chance classifier was 0.062). However, the PRAUC varied significantly across the segments (0.323-0.493). Overall, NREM sleep achieved the highest scores, with the best results of 0.493 in N2. When using data from all segments, the model performed significantly better than single segments, except NREM sleep segments. CONCLUSIONS: The model based on a short segment of iEEG recording can achieve similar results as a model based on prolonged recordings. The analyzed segment should, however, be carefully and systematically selected, preferably from NREM sleep. SIGNIFICANCE: Random selection of short iEEG segments may give rise to inaccurate localization of the EZ.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24014140
- 003
- CZ-PrNML
- 005
- 20240905133807.0
- 007
- ta
- 008
- 240725e20240218ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.clinph.2024.01.007 $2 doi
- 035 __
- $a (PubMed)38430856
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Chybowski, Bartlomiej $u University of Edinburgh, School of Medicine, Deanery of Clinical Sciences, 47 Little France Crescent, EH164TJ Edinburgh, Scotland
- 245 10
- $a Timing matters for accurate identification of the epileptogenic zone / $c B. Chybowski, P. Klimes, J. Cimbalnik, V. Travnicek, P. Nejedly, M. Pail, L. Peter-Derex, J. Hall, F. Dubeau, P. Jurak, M. Brazdil, B. Frauscher
- 520 9_
- $a OBJECTIVE: Interictal biomarkers of the epileptogenic zone (EZ) and their use in machine learning models open promising avenues for improvement of epilepsy surgery evaluation. Currently, most studies restrict their analysis to short segments of intracranial EEG (iEEG). METHODS: We used 2381 hours of iEEG data from 25 patients to systematically select 5-minute segments across various interictal conditions. Then, we tested machine learning models for EZ localization using iEEG features calculated within these individual segments or across them and evaluated the performance by the area under the precision-recall curve (PRAUC). RESULTS: On average, models achieved a score of 0.421 (the result of the chance classifier was 0.062). However, the PRAUC varied significantly across the segments (0.323-0.493). Overall, NREM sleep achieved the highest scores, with the best results of 0.493 in N2. When using data from all segments, the model performed significantly better than single segments, except NREM sleep segments. CONCLUSIONS: The model based on a short segment of iEEG recording can achieve similar results as a model based on prolonged recordings. The analyzed segment should, however, be carefully and systematically selected, preferably from NREM sleep. SIGNIFICANCE: Random selection of short iEEG segments may give rise to inaccurate localization of the EZ.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a dospělí $7 D000328
- 650 12
- $a strojové učení $7 D000069550
- 650 12
- $a epilepsie $x patofyziologie $x diagnóza $7 D004827
- 650 12
- $a elektroencefalografie $x metody $7 D004569
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a časové faktory $7 D013997
- 650 _2
- $a mladý dospělý $7 D055815
- 650 _2
- $a elektrokortikografie $x metody $x normy $7 D000069280
- 650 _2
- $a mladiství $7 D000293
- 650 _2
- $a mozek $x patofyziologie $7 D001921
- 650 _2
- $a stadia spánku $x fyziologie $7 D012894
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Klimes, Petr $u Institute of Scientific Instruments of the CAS, v. v. i., Královopolská 147, 612 00 Brno, Czech Republic
- 700 1_
- $a Cimbalnik, Jan $u International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 602 00 Brno, Czech Republic
- 700 1_
- $a Travnicek, Vojtech $u Institute of Scientific Instruments of the CAS, v. v. i., Královopolská 147, 612 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 602 00 Brno, Czech Republic
- 700 1_
- $a Nejedly, Petr $u Institute of Scientific Instruments of the CAS, v. v. i., Královopolská 147, 612 00 Brno, Czech Republic
- 700 1_
- $a Pail, Martin $u Institute of Scientific Instruments of the CAS, v. v. i., Královopolská 147, 612 00 Brno, Czech Republic; Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital, Member of ERN-EpiCARE, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Behavioral and Social Neuroscience Research Group, CEITEC Central European Institute of Technology, Masaryk University, Žerotínovo nám 617/9, 601 77 Brno, Czech Republic
- 700 1_
- $a Peter-Derex, Laure $u Center for Sleep Medicine and Respiratory Diseases, Lyon University Hospital, Lyon 1 University, 103 Grande Rue de la Croix-Rousse, 69004 Lyon, France; Lyon Neuroscience Research Center, CH Le Vinatier - Bâtiment 462 - Neurocampus, 95 Bd Pinel, 69500 Lyon, France
- 700 1_
- $a Hall, Jeff $u Montreal Neurological Hospital, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Quebec, Canada
- 700 1_
- $a Dubeau, François $u Montreal Neurological Hospital, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Quebec, Canada
- 700 1_
- $a Jurak, Pavel $u Institute of Scientific Instruments of the CAS, v. v. i., Královopolská 147, 612 00 Brno, Czech Republic
- 700 1_
- $a Brazdil, Milan $u Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital, Member of ERN-EpiCARE, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Behavioral and Social Neuroscience Research Group, CEITEC Central European Institute of Technology, Masaryk University, Žerotínovo nám 617/9, 601 77 Brno, Czech Republic
- 700 1_
- $a Frauscher, Birgit $u Montreal Neurological Hospital, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Quebec, Canada; Department of Neurology, Duke University Medical School and Department of Biomedical Engineering, Pratt School of Engineering, 2424 Erwin Road, Durham, NC, 27705, USA. Electronic address: birgit.frauscher@duke.edu
- 773 0_
- $w MED00005214 $t Clinical neurophysiology $x 1872-8952 $g Roč. 161 (20240218), s. 1-9
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38430856 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240725 $b ABA008
- 991 __
- $a 20240905133801 $b ABA008
- 999 __
- $a ok $b bmc $g 2143742 $s 1226006
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 161 $c - $d 1-9 $e 20240218 $i 1872-8952 $m Clinical neurophysiology $n Clin Neurophysiol $x MED00005214
- LZP __
- $a Pubmed-20240725