• Je něco špatně v tomto záznamu ?

Timing matters for accurate identification of the epileptogenic zone

B. Chybowski, P. Klimes, J. Cimbalnik, V. Travnicek, P. Nejedly, M. Pail, L. Peter-Derex, J. Hall, F. Dubeau, P. Jurak, M. Brazdil, B. Frauscher

. 2024 ; 161 (-) : 1-9. [pub] 20240218

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc24014140

OBJECTIVE: Interictal biomarkers of the epileptogenic zone (EZ) and their use in machine learning models open promising avenues for improvement of epilepsy surgery evaluation. Currently, most studies restrict their analysis to short segments of intracranial EEG (iEEG). METHODS: We used 2381 hours of iEEG data from 25 patients to systematically select 5-minute segments across various interictal conditions. Then, we tested machine learning models for EZ localization using iEEG features calculated within these individual segments or across them and evaluated the performance by the area under the precision-recall curve (PRAUC). RESULTS: On average, models achieved a score of 0.421 (the result of the chance classifier was 0.062). However, the PRAUC varied significantly across the segments (0.323-0.493). Overall, NREM sleep achieved the highest scores, with the best results of 0.493 in N2. When using data from all segments, the model performed significantly better than single segments, except NREM sleep segments. CONCLUSIONS: The model based on a short segment of iEEG recording can achieve similar results as a model based on prolonged recordings. The analyzed segment should, however, be carefully and systematically selected, preferably from NREM sleep. SIGNIFICANCE: Random selection of short iEEG segments may give rise to inaccurate localization of the EZ.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24014140
003      
CZ-PrNML
005      
20240905133807.0
007      
ta
008      
240725e20240218ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.clinph.2024.01.007 $2 doi
035    __
$a (PubMed)38430856
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Chybowski, Bartlomiej $u University of Edinburgh, School of Medicine, Deanery of Clinical Sciences, 47 Little France Crescent, EH164TJ Edinburgh, Scotland
245    10
$a Timing matters for accurate identification of the epileptogenic zone / $c B. Chybowski, P. Klimes, J. Cimbalnik, V. Travnicek, P. Nejedly, M. Pail, L. Peter-Derex, J. Hall, F. Dubeau, P. Jurak, M. Brazdil, B. Frauscher
520    9_
$a OBJECTIVE: Interictal biomarkers of the epileptogenic zone (EZ) and their use in machine learning models open promising avenues for improvement of epilepsy surgery evaluation. Currently, most studies restrict their analysis to short segments of intracranial EEG (iEEG). METHODS: We used 2381 hours of iEEG data from 25 patients to systematically select 5-minute segments across various interictal conditions. Then, we tested machine learning models for EZ localization using iEEG features calculated within these individual segments or across them and evaluated the performance by the area under the precision-recall curve (PRAUC). RESULTS: On average, models achieved a score of 0.421 (the result of the chance classifier was 0.062). However, the PRAUC varied significantly across the segments (0.323-0.493). Overall, NREM sleep achieved the highest scores, with the best results of 0.493 in N2. When using data from all segments, the model performed significantly better than single segments, except NREM sleep segments. CONCLUSIONS: The model based on a short segment of iEEG recording can achieve similar results as a model based on prolonged recordings. The analyzed segment should, however, be carefully and systematically selected, preferably from NREM sleep. SIGNIFICANCE: Random selection of short iEEG segments may give rise to inaccurate localization of the EZ.
650    _2
$a lidé $7 D006801
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a dospělí $7 D000328
650    12
$a strojové učení $7 D000069550
650    12
$a epilepsie $x patofyziologie $x diagnóza $7 D004827
650    12
$a elektroencefalografie $x metody $7 D004569
650    _2
$a lidé středního věku $7 D008875
650    _2
$a časové faktory $7 D013997
650    _2
$a mladý dospělý $7 D055815
650    _2
$a elektrokortikografie $x metody $x normy $7 D000069280
650    _2
$a mladiství $7 D000293
650    _2
$a mozek $x patofyziologie $7 D001921
650    _2
$a stadia spánku $x fyziologie $7 D012894
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Klimes, Petr $u Institute of Scientific Instruments of the CAS, v. v. i., Královopolská 147, 612 00 Brno, Czech Republic
700    1_
$a Cimbalnik, Jan $u International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 602 00 Brno, Czech Republic
700    1_
$a Travnicek, Vojtech $u Institute of Scientific Instruments of the CAS, v. v. i., Královopolská 147, 612 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 602 00 Brno, Czech Republic
700    1_
$a Nejedly, Petr $u Institute of Scientific Instruments of the CAS, v. v. i., Královopolská 147, 612 00 Brno, Czech Republic
700    1_
$a Pail, Martin $u Institute of Scientific Instruments of the CAS, v. v. i., Královopolská 147, 612 00 Brno, Czech Republic; Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital, Member of ERN-EpiCARE, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Behavioral and Social Neuroscience Research Group, CEITEC Central European Institute of Technology, Masaryk University, Žerotínovo nám 617/9, 601 77 Brno, Czech Republic
700    1_
$a Peter-Derex, Laure $u Center for Sleep Medicine and Respiratory Diseases, Lyon University Hospital, Lyon 1 University, 103 Grande Rue de la Croix-Rousse, 69004 Lyon, France; Lyon Neuroscience Research Center, CH Le Vinatier - Bâtiment 462 - Neurocampus, 95 Bd Pinel, 69500 Lyon, France
700    1_
$a Hall, Jeff $u Montreal Neurological Hospital, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Quebec, Canada
700    1_
$a Dubeau, François $u Montreal Neurological Hospital, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Quebec, Canada
700    1_
$a Jurak, Pavel $u Institute of Scientific Instruments of the CAS, v. v. i., Královopolská 147, 612 00 Brno, Czech Republic
700    1_
$a Brazdil, Milan $u Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital, Member of ERN-EpiCARE, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Behavioral and Social Neuroscience Research Group, CEITEC Central European Institute of Technology, Masaryk University, Žerotínovo nám 617/9, 601 77 Brno, Czech Republic
700    1_
$a Frauscher, Birgit $u Montreal Neurological Hospital, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Quebec, Canada; Department of Neurology, Duke University Medical School and Department of Biomedical Engineering, Pratt School of Engineering, 2424 Erwin Road, Durham, NC, 27705, USA. Electronic address: birgit.frauscher@duke.edu
773    0_
$w MED00005214 $t Clinical neurophysiology $x 1872-8952 $g Roč. 161 (20240218), s. 1-9
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38430856 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240725 $b ABA008
991    __
$a 20240905133801 $b ABA008
999    __
$a ok $b bmc $g 2143742 $s 1226006
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 161 $c - $d 1-9 $e 20240218 $i 1872-8952 $m Clinical neurophysiology $n Clin Neurophysiol $x MED00005214
LZP    __
$a Pubmed-20240725

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...