• Je něco špatně v tomto záznamu ?

Nebulization and In Vitro Upper Airway Deposition of Liposomal Carrier Systems

O. Mišík, J. Kejíková, O. Cejpek, M. Malý, A. Jugl, M. Bělka, F. Mravec, F. Lízal

. 2024 ; 21 (4) : 1848-1860. [pub] 20240311

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24014447

Liposomal carrier systems have emerged as a promising technology for pulmonary drug delivery. This study focuses on two selected liposomal systems, namely, dipalmitoylphosphatidylcholine stabilized by phosphatidic acid and cholesterol (DPPC-PA-Chol) and dipalmitoylphosphatidylcholine stabilized by polyethylene glycol and cholesterol (DPPC-PEG-Chol). First, the research investigates the stability of these liposomal systems during the atomization process using different kinds of nebulizers (air-jet, vibrating mesh, and ultrasonic). The study further explores the aerodynamic particle size distribution of the aerosol generated by the nebulizers. The nebulizer that demonstrated optimal stability and particle size was selected for more detailed investigation, including Andersen cascade impactor measurements, an assessment of the influence of flow rate and breathing profiles on aerosol particle size, and an in vitro deposition study on a realistic replica of the upper airways. The most suitable combination of a nebulizer and liposomal system was DPPC-PA-Chol nebulized by a Pari LC Sprint Star in terms of stability and particle size. The influence of the inspiration flow rate on the particle size was not very strong but was not negligible either (decrease of Dv50 by 1.34 μm with the flow rate increase from 8 to 60 L/min). A similar effect was observed for realistic transient inhalation. According to the in vitro deposition measurement, approximately 90% and 70% of the aerosol penetrated downstream of the trachea using the stationary flow rate and the realistic breathing profile, respectively. These data provide an image of the potential applicability of liposomal carrier systems for nebulizer therapy. Regional lung drug deposition is patient-specific; therefore, deposition results might vary for different airway geometries. However, deposition measurement with realistic boundary conditions (airway geometry, breathing profile) brings a more realistic image of the drug delivery by the selected technology. Our results show how much data from cascade impactor testing or estimates from the fine fraction concept differ from those of a more realistic case.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24014447
003      
CZ-PrNML
005      
20240905133927.0
007      
ta
008      
240725s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acs.molpharmaceut.3c01146 $2 doi
035    __
$a (PubMed)38466817
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Mišík, Ondrej $u Department of Thermodynamics and Environmental Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic $1 https://orcid.org/0000000346835145
245    10
$a Nebulization and In Vitro Upper Airway Deposition of Liposomal Carrier Systems / $c O. Mišík, J. Kejíková, O. Cejpek, M. Malý, A. Jugl, M. Bělka, F. Mravec, F. Lízal
520    9_
$a Liposomal carrier systems have emerged as a promising technology for pulmonary drug delivery. This study focuses on two selected liposomal systems, namely, dipalmitoylphosphatidylcholine stabilized by phosphatidic acid and cholesterol (DPPC-PA-Chol) and dipalmitoylphosphatidylcholine stabilized by polyethylene glycol and cholesterol (DPPC-PEG-Chol). First, the research investigates the stability of these liposomal systems during the atomization process using different kinds of nebulizers (air-jet, vibrating mesh, and ultrasonic). The study further explores the aerodynamic particle size distribution of the aerosol generated by the nebulizers. The nebulizer that demonstrated optimal stability and particle size was selected for more detailed investigation, including Andersen cascade impactor measurements, an assessment of the influence of flow rate and breathing profiles on aerosol particle size, and an in vitro deposition study on a realistic replica of the upper airways. The most suitable combination of a nebulizer and liposomal system was DPPC-PA-Chol nebulized by a Pari LC Sprint Star in terms of stability and particle size. The influence of the inspiration flow rate on the particle size was not very strong but was not negligible either (decrease of Dv50 by 1.34 μm with the flow rate increase from 8 to 60 L/min). A similar effect was observed for realistic transient inhalation. According to the in vitro deposition measurement, approximately 90% and 70% of the aerosol penetrated downstream of the trachea using the stationary flow rate and the realistic breathing profile, respectively. These data provide an image of the potential applicability of liposomal carrier systems for nebulizer therapy. Regional lung drug deposition is patient-specific; therefore, deposition results might vary for different airway geometries. However, deposition measurement with realistic boundary conditions (airway geometry, breathing profile) brings a more realistic image of the drug delivery by the selected technology. Our results show how much data from cascade impactor testing or estimates from the fine fraction concept differ from those of a more realistic case.
650    _2
$a lidé $7 D006801
650    12
$a bronchodilatancia $7 D001993
650    12
$a trachea $7 D014132
650    _2
$a 1,2-dipalmitoylfosfatidylcholin $7 D015060
650    _2
$a nebulizátory a vaporizátory $7 D009330
650    _2
$a liposomy $7 D008081
650    _2
$a aerosoly $7 D000336
650    _2
$a aplikace inhalační $7 D000280
650    _2
$a lékové transportní systémy $7 D016503
650    _2
$a cholesterol $7 D002784
650    _2
$a velikost částic $7 D010316
650    _2
$a design vybavení $7 D004867
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kejíková, Jana $u Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic
700    1_
$a Cejpek, Ondřej $u Department of Thermodynamics and Environmental Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
700    1_
$a Malý, Milan $u Department of Thermodynamics and Environmental Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
700    1_
$a Jugl, Adam $u Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic $1 https://orcid.org/0000000306022334 $7 ola20211132987
700    1_
$a Bělka, Miloslav $u Department of Thermodynamics and Environmental Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
700    1_
$a Mravec, Filip $u Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic $1 https://orcid.org/0000000161144751
700    1_
$a Lízal, František $u Department of Thermodynamics and Environmental Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
773    0_
$w MED00008279 $t Molecular pharmaceutics $x 1543-8392 $g Roč. 21, č. 4 (2024), s. 1848-1860
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38466817 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240725 $b ABA008
991    __
$a 20240905133921 $b ABA008
999    __
$a ok $b bmc $g 2143918 $s 1226313
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 21 $c 4 $d 1848-1860 $e 20240311 $i 1543-8392 $m Molecular pharmaceutics $n Mol Pharm $x MED00008279
LZP    __
$a Pubmed-20240725

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...