• Je něco špatně v tomto záznamu ?

HIF-1α limits myocardial infarction by promoting mitophagy in mouse hearts adapted to chronic hypoxia

P. Alanova, L. Alan, B. Opletalova, R. Bohuslavova, P. Abaffy, K. Matejkova, K. Holzerova, D. Benak, N. Kaludercic, R. Menabo, F. Di Lisa, B. Ostadal, F. Kolar, G. Pavlinkova

. 2024 ; 240 (9) : e14202. [pub] 20240717

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24019102

Grantová podpora
LX22NPO5104 National Institute for Research of Metabolic and Cardiovascular Diseases
NU20J-02- 00035 Ministry of Health of the Czech Republic
270623 Charles University
European Union-Next Generation EU
C93C22007550006 National Recovery and Resilience Plan (NRRP)
RVO: 86652036 Czech Academy of Sciences

AIM: The transcriptional factor HIF-1α is recognized for its contribution to cardioprotection against acute ischemia/reperfusion injury. Adaptation to chronic hypoxia (CH) is known to stabilize HIF-1α and increase myocardial ischemic tolerance. However, the precise role of HIF-1α in mediating the protective effect remains incompletely understood. METHODS: Male wild-type (WT) mice and mice with partial Hif1a deficiency (hif1a +/-) were exposed to CH for 4 weeks, while their respective controls were kept under normoxic conditions. Subsequently, their isolated perfused hearts were subjected to ischemia/reperfusion to determine infarct size, while RNA-sequencing of isolated cardiomyocytes was performed. Mitochondrial respiration was measured to evaluate mitochondrial function, and western blots were performed to assess mitophagy. RESULTS: We demonstrated enhanced ischemic tolerance in WT mice induced by adaptation to CH compared with their normoxic controls and chronically hypoxic hif1a +/- mice. Through cardiomyocyte bulk mRNA sequencing analysis, we unveiled significant reprogramming of cardiomyocytes induced by CH emphasizing mitochondrial processes. CH reduced mitochondrial content and respiration and altered mitochondrial ultrastructure. Notably, the reduced mitochondrial content correlated with enhanced autophagosome formation exclusively in chronically hypoxic WT mice, supported by an increase in the LC3-II/LC3-I ratio, expression of PINK1, and degradation of SQSTM1/p62. Furthermore, pretreatment with the mitochondrial division inhibitor (mdivi-1) abolished the infarct size-limiting effect of CH in WT mice, highlighting the key role of mitophagy in CH-induced cardioprotection. CONCLUSION: These findings provide new insights into the contribution of HIF-1α to cardiomyocyte survival during acute ischemia/reperfusion injury by activating the selective autophagy pathway.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24019102
003      
CZ-PrNML
005      
20250312105236.0
007      
ta
008      
241015s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/apha.14202 $2 doi
035    __
$a (PubMed)39016532
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Alanova, Petra $u Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000199007074
245    10
$a HIF-1α limits myocardial infarction by promoting mitophagy in mouse hearts adapted to chronic hypoxia / $c P. Alanova, L. Alan, B. Opletalova, R. Bohuslavova, P. Abaffy, K. Matejkova, K. Holzerova, D. Benak, N. Kaludercic, R. Menabo, F. Di Lisa, B. Ostadal, F. Kolar, G. Pavlinkova
520    9_
$a AIM: The transcriptional factor HIF-1α is recognized for its contribution to cardioprotection against acute ischemia/reperfusion injury. Adaptation to chronic hypoxia (CH) is known to stabilize HIF-1α and increase myocardial ischemic tolerance. However, the precise role of HIF-1α in mediating the protective effect remains incompletely understood. METHODS: Male wild-type (WT) mice and mice with partial Hif1a deficiency (hif1a +/-) were exposed to CH for 4 weeks, while their respective controls were kept under normoxic conditions. Subsequently, their isolated perfused hearts were subjected to ischemia/reperfusion to determine infarct size, while RNA-sequencing of isolated cardiomyocytes was performed. Mitochondrial respiration was measured to evaluate mitochondrial function, and western blots were performed to assess mitophagy. RESULTS: We demonstrated enhanced ischemic tolerance in WT mice induced by adaptation to CH compared with their normoxic controls and chronically hypoxic hif1a +/- mice. Through cardiomyocyte bulk mRNA sequencing analysis, we unveiled significant reprogramming of cardiomyocytes induced by CH emphasizing mitochondrial processes. CH reduced mitochondrial content and respiration and altered mitochondrial ultrastructure. Notably, the reduced mitochondrial content correlated with enhanced autophagosome formation exclusively in chronically hypoxic WT mice, supported by an increase in the LC3-II/LC3-I ratio, expression of PINK1, and degradation of SQSTM1/p62. Furthermore, pretreatment with the mitochondrial division inhibitor (mdivi-1) abolished the infarct size-limiting effect of CH in WT mice, highlighting the key role of mitophagy in CH-induced cardioprotection. CONCLUSION: These findings provide new insights into the contribution of HIF-1α to cardiomyocyte survival during acute ischemia/reperfusion injury by activating the selective autophagy pathway.
650    _2
$a zvířata $7 D000818
650    12
$a mitofagie $x fyziologie $7 D063306
650    _2
$a myši $7 D051379
650    12
$a faktor 1 indukovatelný hypoxií - podjednotka alfa $x metabolismus $x genetika $7 D051795
650    _2
$a mužské pohlaví $7 D008297
650    12
$a infarkt myokardu $x metabolismus $x patologie $x genetika $7 D009203
650    12
$a hypoxie $x metabolismus $7 D000860
650    _2
$a kardiomyocyty $x metabolismus $x patologie $7 D032383
650    _2
$a fyziologická adaptace $x fyziologie $7 D000222
650    _2
$a myši inbrední C57BL $7 D008810
655    _2
$a časopisecké články $7 D016428
700    1_
$a Alan, Lukas $u Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $u Department of Biology, University of Padova, Padova, Italy
700    1_
$a Opletalova, Barbora $u Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $u Faculty of Science, Charles University, Prague, Czech Republic
700    1_
$a Bohuslavova, Romana $u Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
700    1_
$a Abaffy, Pavel $u Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
700    1_
$a Matejkova, Katerina $u Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
700    1_
$a Holzerova, Kristyna $u Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Benák, Daniel, $d 1993- $u Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $7 xx0329790
700    1_
$a Kaludercic, Nina $u Department of Biomedical Sciences, University of Padova, Padova, Italy $u Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy $u Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
700    1_
$a Menabo, Roberta $u Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
700    1_
$a Di Lisa, Fabio $u Department of Biomedical Sciences, University of Padova, Padova, Italy $u Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
700    1_
$a Ostadal, Bohuslav $u Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Kolar, Frantisek $u Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Pavlinkova, Gabriela $u Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
773    0_
$w MED00154561 $t Acta physiologica (Oxford, England) $x 1748-1716 $g Roč. 240, č. 9 (2024), s. e14202
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39016532 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20250312105243 $b ABA008
999    __
$a ok $b bmc $g 2201743 $s 1231075
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 240 $c 9 $d e14202 $e 20240717 $i 1748-1716 $m Acta physiologica (Oxford, England) $n Acta Physiol (Oxf) $x MED00154561
GRA    __
$a LX22NPO5104 $p National Institute for Research of Metabolic and Cardiovascular Diseases
GRA    __
$a NU20J-02- 00035 $p Ministry of Health of the Czech Republic
GRA    __
$a 270623 $p Charles University
GRA    __
$p European Union-Next Generation EU
GRA    __
$a C93C22007550006 $p National Recovery and Resilience Plan (NRRP)
GRA    __
$a RVO: 86652036 $p Czech Academy of Sciences
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...