Eye-background contrast as a quantitative marker for pupal age in a forensically important carrion beetle Necrodes littoralis L. (Silphidae)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32879361
PubMed Central
PMC7468232
DOI
10.1038/s41598-020-71369-0
PII: 10.1038/s41598-020-71369-0
Knihovny.cz E-zdroje
- MeSH
- barva MeSH
- brouci fyziologie MeSH
- forenzní entomologie metody MeSH
- kukla fyziologie MeSH
- mikroskopie MeSH
- pigmentace MeSH
- počítačová grafika MeSH
- reprodukovatelnost výsledků MeSH
- software MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Insect pupae sampled at a death scene may be used to estimate the post-mortem interval. The pupal age is however difficult to estimate, as there are no good quantitative markers for the age of a pupa. We present a novel method for pupal age estimation based on the quantification of contrast in intensity between the eyes of a pupa and the middle grey photography card as a standard background. The intensity is measured on a standardized scale from 0 (perfect black) to 255 (perfect white) using computer graphical software and pictures of the eye and the background taken with a stereomicroscope. Eye-background contrast is calculated by subtracting the average intensity of the eye from the average intensity of the background. The method was developed and validated using pupae of Necrodes littoralis (Linnaeus, 1758) (Coleoptera: Silphidae), one of the most abundant beetle species on human cadavers in Central Europe. To develop the model, pupae were reared in 17, 20 and 23 °C, with a total of 120 specimens. The method was validated by three raters, using in total 182 pupae reared in 15, 17, 20, 23 and 25 °C. We found a gradual increase in eye-background contrast with pupal age. Changes followed generalized logistic function, with almost perfect fit of the model. Using our method pupal age was estimated with the average error of 8.1 accumulated degree-days (ADD). The largest error was 27.8 ADD and 95% of age estimates had errors smaller than 20 ADD. While using the method, different raters attained similar accuracy. In conclusion, we have demonstrated that eye-background contrast is a good quantitative marker for the age of N. littoralis pupae. Contrast measurements gave accurate estimates for pupal age. Our method is thus proven to be a candidate for a reliable approach to age insect pupae in forensic entomology.
Zobrazit více v PubMed
Amendt J, Richards CS, Campobasso CP, Zehner R, Hall MJR. Forensic entomology: applications and limitations. Forensic Sci. Med. Pat. 2011;7:379–392. PubMed
Villet MH, Amendt J. Advances in entomological methods for death time estimation. In: Turk E, editor. Forensic Pathology Reviews. Berlin: Springer; 2011. pp. 213–237.
Amendt J, Campobasso CP, Gaudry E, Reiter C, LeBlanc HN, Hall MJR. Best practice in forensic entomology—standards and guidelines. Int. J. Legal Med. 2007;121:90–104. PubMed
Wells JD, LaMotte LR. Estimating the Postmortem Interval. In: Byrd JH, Castner JL, editors. Forensic Entomology. The Utility of Arthropods in Legal Investigations. Boca Raton: CRC Press; 2009. pp. 367–384.
Denlinger DL, Žďárek J. Metamorphosis behavior of flies. Annu. Rev. Entomol. 1994;39:243–266. PubMed
Lecheta MC, Thyssen PJ, Moura MO. The effect of temperature on development of Sarconesia chlorogaster, a blowfly of forensic importance. Forensic Sci. Med. Pat. 2015;11:538–543. PubMed
Feng DX, Liu GC. Pupal age estimation of forensically important Megaselia scalaris (Loew) (Diptera: Phoridae) Forensic Sci. Int. 2014;236:133–137. PubMed
Frątczak-Łagiewska K, Matuszewski S. Classification of forensically-relevant larvae according to instar in a closely related species of carrion beetles (Coleoptera: Silphidae: Silphinae) Forensic Sci. Med. Pat. 2016;12:193–197. PubMed PMC
Jakubec P. Thermal summation model and instar determination of all developmental stages of necrophagous beetle, Sciodrepoides watsoni (Spence) (Coleoptera: Leiodidae: Cholevinae) PeerJ. 2016;4:e1944. PubMed PMC
Jakubec P, Novák M, Qubaiová J, Šuláková H, Růžička J. Description of immature stages of Thanatophilus sinuatus (Coleoptera: Silphidae) Int. J. Legal Med. 2019;133:1549–1565. PubMed
Novák M, Jakubec P, Qubaiová J, Šuláková H, Růžička J. Revisited larval morphology of Thanatophilus rugosus (Coleoptera: Silphidae) Int. J. Legal Med. 2018;132:939–954. PubMed
Roux O, Gers C, Legal L. Ontogenetic study of three Calliphoridae of forensic importance through cuticular hydrocarbon analysis. Med. Vet. Entomol. 2008;22:309–317. PubMed
Frere B, et al. GC-MS analysis of cuticular lipids in recent and older scavenger insect puparia. An approach to estimate the postmortem interval (PMI) Anal. Bioanal. Chem. 2013;406:1081–1088. PubMed
Moore HE, Pechal JL, Benbow ME, Drijfhout FP. The potential use of cuticular hydrocarbons and multivariate analysis to age empty puparial cases of Calliphora vicina and Lucilia sericata. Sci. Rep. 2017;7:1933. PubMed PMC
Ames C, Turner B, Daniel B. Estimating the post-mortem interval (II): the use of differential temporal gene expression to determine the age of blowfly pupae. Int. Congr. Ser. 2006;1288:861–863.
Zehner R, Mösch S, Amendt J. Estimating the postmortem interval by determining the age of fly pupae: are there any molecular tools? Int. Congr. Ser. 2006;1288:619–621.
Zehner R, Amendt J, Boehme P. Gene expression analysis as a tool for age estimation of blowfly pupae. Forensic Sci. Int. 2009;2:292–293.
Tarone AM, Foran DR. Gene expression during blow fly development: improving the precision of age estimates in forensic entomology. J. Forensic Sci. 2011;56:S112–S122. PubMed
Boehme P, Spahn P, Amendt J, Zehner R. Differential gene expression during metamorphosis: a promising approach for age estimation of forensically important Calliphora vicina pupae (Diptera: Calliphoridae) Int. J. Legal Med. 2013;127:243–249. PubMed
Boehme P, Spahn P, Amendt J, Zehner R. The analysis of temporal gene expression to estimate the age of forensically important blow fly pupae: results from three blind studies. Int. J. Legal Med. 2014;128:565–573. PubMed
Zajac BK, Amendt J, Horres R, Verhoff MA, Zehner R. De novo transcriptome analysis and highly sensitive digital gene expression profiling of Calliphora vicina (Diptera: Calliphoridae) pupae using MACE (Massive Analysis of cDNA Ends) Forensic Sci Int. Gen. 2015;15:137–146. PubMed
Wang Y, et al. Estimating the age of Lucilia illustris during the intrapuparial period using two approaches: Morphological changes and differential gene expression. Forensic Sci. Int. 2018;287:1–11. PubMed
Zajac BK, Amendt J, Verhoff MA, Zehner R. Dating pupae of the blow fly Calliphora vicina Robineau-Desvoidy 1830 (Diptera: Calliphoridae) for post mortem interval—estimation: validation of molecular age markers. Genes-Basel. 2018;9:1–19. PubMed PMC
Davies K, Harvey M. Internal morphological analysis for age estimation of blow fly pupae (Diptera: Calliphoridae) in post-mortem interval estimation. J. Forensic Sci. 2012;58:79–84. PubMed
Richards CS, et al. Virtual forensic entomology: improving estimates of minimum post-mortem interval with 3D micro-computed tomography. Forensic Sci. Int. 2012;220:251–264. PubMed
Brown K, Harvey M. Optical coherence tomography: age estimation of Calliphora vicina pupae in vivo? Forensic Sci. Int. 2014;242:157–161. PubMed
Karabey T, Sert O. The analysis of pupal development period in Lucilia sericata (Diptera: Calliphoridae) forensically important insect. Int. J. Legal Med. 2014;132:1185–1196. PubMed
Brown K, Thorne A, Harvey M. Calliphora vicina (Diptera: Calliphoridae) pupae: a timeline of external morphological development and a new age and PMI estimation tool. Int. J. Legal Med. 2015;129:835–850. PubMed
Ma T, Huang J, Wang JF. Study on the pupal morphogenesis of Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) for postmortem interval estimation. Forensic Sci. Int. 2015;253:88–93. PubMed
Martín-Vega D, Simonsen TJ, Hall MJR. Looking into the puparium: Micro-CT visualization of the internal morphological changes during metamorphosis of the blow fly, Calliphora vicina, with the first quantitative analysis of organ development in cyclorrhaphous dipterans. J. Morphol. 2016;278:629–651. PubMed PMC
Martín-Vega D, Simonsen TJ, Wicklein M, Hall MJR. Age estimation during the blow fly intra-puparial period: a qualitative and quantitative approach using micro-computed tomography. Int. J. Legal Med. 2017;131:1429–1448. PubMed PMC
Flissak JC, Moura MO. Intrapuparial Development of Sarconesia chlorogaster (Diptera: Calliphoridae) for Postmortem Interval Estimation (PMI) J. Med. Entomol. 2018;55:277–284. PubMed
Hall MJR, Simosen TJ, Martín-Vega D. The ‘dance’ of life: visualizing metamorphosis during pupation in the blow fly Calliphora vicina by X-ray video imaging and micro-computed tomography. R. Soc. Open Sci. 2018;4:160699. PubMed PMC
Sivasubramanian P, Biagi M. Morphology of the pupal stages of the fleshfly, Sarcophaga bullata (Parker) (Diptera: Sarcophagidae) Int. J. Insect Morphol. 1983;12:355–359.
Greenberg B. Flies as forensic indicators. J. Med. Entomol. 1991;28:565–577. PubMed
Pujol-Luz JR, Barros-Cordeiro KB. Intra-puparial development of the females of Chrysomya albiceps (Wiedemann) (Diptera, Calliphoridae) Rev. Bras. Entomol. 2012;56:269–272.
Defilippo F, Bonilauri P, Dottori M. 2013) Effect of temperature on six different developmental landmarks within the pupal stage of the forensically important blowfly Calliphora vicina (Robineau-Desvoidy) (Diptera: Calliphoridae. J. Forensic Sci. 2013;58:1554–1557. PubMed
Proença B, Ribeiro AC, Luz RT, Aguiar VM, Maia VC, Couri MS. Intrapuparial development of Chrysomya putoria (Diptera: Calliphoridae) J. Med. Entomol. 2014;51:908–914. PubMed
Feng DX, Liu GC. Pupal age estimation of forensically important Megaselia spiracularis Schmitz (Diptera: Phoridae) Forensic Sci. Int. 2013;231:199–203. PubMed
Barros-Cordeiro KB, Báo SN, Pujol-Luz JR. Intra-puparial development of the black soldier-fly Hermetia illucens. J. Insect. Sci. 2014;14:1–10. PubMed PMC
Barros-Cordeiro KB, Pujol-Luz JR, Name KPO, Báo SN. Intra- puparial development of the Cochliomyia macellaria and Lucilia cuprina (Diptera, Calliphoridae) Rev. Bras. Entomol. 2016;110:1–7.
Grisendi A, Defilippo F, Gatti F, Dottori M, Bonilauri P. Estimation of accumulated degree day value of six landmarks within the pupal stage of Lucilia sericata. J. Life Sci. 2015;9:311–317.
Li L, Wang Y, Wang J. Intra-puparial development and age estimation of forensically important Hermetia illucens (L.) J. Asian Pac. Entomol. 2016;19:233–237.
Sinha SK, Mahato S. Intra-puparial development of flesh fly Sarcophaga dux (Thomson) (Diptera, Sarcophagidae) Curr. Sci. India. 2016;111:1063–1070.
Salazar-Souza M, Couri MS, Aguiar VM. Chronology of the intrapuparial development of the blowfly Chrysomya albiceps (Diptera: Calliphoridae): application in forensic entomology. J. Med. Entomol. 2018;55:825–832. PubMed
Greenberg B, Kunich JC. Entomology And the Law: Flies as Forensic Indicators. Cambridge: Cambridge University Press; 2002.
Finell N, Järvilehto M. Development of the compound eyes of the blowfly Calliphora erythrocephala: changes in morphology and function during metamorphosis. Ann. Zool. Fenn. 1983;20:223–234.
Cepeda-Palacios R, Scholl PJ. Intra-puparial development in Oestrus ovis (Diptera: Oestridae) J. Med. Entomol. 2000;37:239–245. PubMed
Kueppers H. Color Atlas: A Practical Guide for Color MIXING. New York: Barron’s; 1982.
Dekeirsschieter J, Verheggen F, Lognay G, Haubruge E. Large carrion beetles (Coleoptera, Silphidae) in Western Europe: a review. Biotechnol. Agron. Soc. 2011;15:435–447.
Matuszewski S. A general approach for postmortem interval based on uniformly distributed and interconnected qualitative indicators. Int. J. Legal Med. 2017;131:877–884. PubMed PMC
Charabidze D, Vincent B, Pasquerault T, Hedouin V. The biology and ecology of Necrodes littoralis, a species of forensic interest in Europe. Int. J. Legal Med. 2016;130:273–280. PubMed
Mądra-Bielewicz A, Frątczak-Łagiewska K, Matuszewski S. Sex- and size-related patterns of carrion visitation in Necrodes littoralis (Coleoptera: Silphidae) and Creophilus maxillosus (Coleoptera: Staphylinidae) J. Forensic Sci. 2017;62:1229–1233. PubMed
Bajerlein D, Taberski D, Matuszewski S. Estimation of postmortem interval (PMI) based on empty puparia of Phormia regina (Meigen) (Diptera: Calliphoridae) and third larval stage of Necrodes littoralis (L.) (Coleoptera: Silphidae)—advantages of using different PMI indicators. J. Forensic Leg. Med. 2018;55:95–98. PubMed
Gruszka J, et al. Patterns and mechanisms for larval aggregation in carrion beetle Necrodes littoralis (Coleoptera: Silphidae) Anim. Behav. 2020;162:1–10.
Matuszewski S, Szafałowicz M. A simple computer-assisted quantification of contrast in a fingerprint. J. Forensic Sci. 2013;58:1310–1313. PubMed
Brown K, Thorne A, Harvey M. Preservation of Calliphora vicina (Diptera: Calliphoridae) pupae for use in post-mortem interval estimation. Forensic Sci. Int. 2012;23:176–183. PubMed
Amendt J, Anderson G, Campobasso CP, Dadour I, Gaudry E, Hall MJR, Moretti TC, Sukontason KL, Villet MH. Standard practices. In: Tomberlin JK, Benbow M, editors. Forensic Entomology. International Dimensions and Frontiers. Boca Raton: CRC Press; 2015. pp. 381–398.
da Silva SM, Moura MO. Intrapuparial Development of Hemilucilia semidiaphana (Diptera: Calliphoridae) and Its Use in Forensic Entomology. J. Med. Entomol. 2019;56:1623–1635. PubMed
Richards CS, Villet MH. Factors affecting accuracy and precision of thermal summation models of insect development used to estimate post-mortem intervals. Int. J. Legal Med. 2008;122:401–408. PubMed
Gruszka, J. & Matuszewski S. Development of Necrodes littoralis L. (Coleoptera: Silphidae) at five constant temperatures—preliminary data in 16th Meeting of the European Association for Forensic Entomology, 22 (University of Bordeaux, 2019).