Thermal summation model and instar determination of all developmental stages of necrophagous beetle, Sciodrepoides watsoni (Spence) (Coleoptera: Leiodidae: Cholevinae)

. 2016 ; 4 () : e1944. [epub] 20160421

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27123379

Necrophagous beetles are underrepresented in forensic entomology studies despite their undeniable utility for the field. In the present article, information is presented regarding the developmental biology and instar determination of Sciodrepoides watsoni (Spence, 1813), a very common species occurring across the Holarctic region. Wild collected beetles were kept in climate chambers at constant temperature (12, 15, 18, 21 and 28 °C) and their development was regularly documented. Parameters of thermal summation models and standard errors were calculated for each developmental stage. These models may be used for an estimation of post-mortem interval in legal investigations after further validation on local populations of S. watsoni. An additional methodology is introduced for future studies of size-based characteristics, addressing instar identification bias. The methodology provided estimations (mean, standard error and standard deviation) of S. watsoni larval head capsule width for preliminary larval instar determination. The methodology may be used with other morphological features to improve instar determination accuracy.

Zobrazit více v PubMed

Baqué M, Amendt J, Verhoff MA, Zehner R. Descriptive analyses of differentially expressed genes during larval development of Calliphora vicina (Diptera: Calliphoridae) International Journal of Legal Medicine. 2015a;129:891–902. doi: 10.1007/s00414-015-1180-8. PubMed DOI

Baqué M, Filmann N, Verhoff MA, Amendt J. Establishment of developmental charts for the larvae of the blow fly Calliphora vicina using quantile regression. Forensic Science International. 2015b;248:1–9. doi: 10.1016/j.forsciint.2014.12.020. PubMed DOI

Delbac L, Lecharpentier P, Thiery D. Larval instars determination for the European Grapevine Moth (Lepidoptera: Tortricidae) based on the frequency distribution of head-capsule widths. Crop Protection. 2010;29:623–630. doi: 10.1016/j.cropro.2010.01.009. DOI

Dyar HG. The number of molts of lepidopterous larvae. Psyche: A Journal of Entomology. 1890;5:420–422. doi: 10.1155/1890/23871. DOI

Engler I. Vergleichende Untersuchungen zur jahreszeitlichen Einpassung von Catopiden (Col.) in ihren Lebensraum. Zoologische Jahrbücher. Abteilung für Systematik, Geographie und Biologie der Tiere. 1981;109:399–432.

Fratczak K, Matuszewski S. Instar determination in forensically useful beetles Necrodes littoralis (Silphidae) and Creophilus maxillosus (Staphylinidae) Forensic Science International. 2014;241:20–26. doi: 10.1016/j.forsciint.2014.04.026. PubMed DOI

Global Biodiversity Information Facility Sciodrepoides watsoni. Copenhagen: Global Biodiversity Information Facility; 2015. Available at http://www.gbif.org/species/4445042 (accessed on 2015)

Gomez J, Chavez BY, Castillo A, Valle FJ, Vega FE. The coffee berry borer (Coleoptera: Curculionidae): how many instars are there? Annals of the Entomological Society of America. 2015;108:311–315. doi: 10.1093/aesa/sav009. DOI

Higley LG, Pedigo LP, Ostlie KR. Degday: a program for calculating degree-days, and assumptions behind the degree-day approach. Environmental Entomology. 1986;15:999–1016. doi: 10.1093/ee/15.5.999. DOI

Ikemoto T, Takai K. A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environmental Entomology. 2000;29:671–682. doi: 10.1603/0046-225X-29.4.671. DOI

Kahle D, Wickham H. ggmap: spatial visualization with. The R Journal. 2013;5:144–161.

Kilian A, Mądra A. Comments on the biology of Sciodrepoides watsoni (Spence, 1813) with descriptions of larvae and pupa (Coleoptera: Leiodidae: Cholevinae) Zootaxa. 2015;3955:45–61. doi: 10.11646/zootaxa.3955.1.2. PubMed DOI

Logan JA, Bentz BJ, Vandygriff JC, Turner DL. General program for determining instar distributions from headcapsule widths: example analysis of mountain pine beetle (Coleoptera: Scolytidae) data. Environmental Entomology. 1998;27:555–563. doi: 10.1093/ee/27.3.555. DOI

Matuszewski S. Estimating the pre-appearance interval from temperature in Necrodes littoralis L. (Coleoptera: Silphidae) Forensic Science International. 2011;212:180–188. doi: 10.1016/j.forsciint.2011.06.010. PubMed DOI

Merville A, Vallier A, Venner S, Siberchicot A, Fouchet D, Heddi A, Bel-Venner MC. Determining the instar of a weevil larva (Coleoptera: Curculionidae) using a parsimonious method. European Journal of Entomology. 2014;111:567–573. doi: 10.14411/eje.2014.056. DOI

Midgley JM, Richards CS, Villet MH. The utility of Coleoptera in forensic investigations. In: Amendt J, Goff ML, Campobasso CP, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. pp. 57–68.

Midgley JM, Villet MH. Development of Thanatophilus micans (Fabricius 1794) (Coleoptera: Silphidae) at constant temperatures. International Journal of Legal Medicine. 2009a;123:285–292. doi: 10.1007/s00414-008-0280-0. PubMed DOI

Midgley JM, Villet MH. Effect of the killing method on post-mortem change in length of larvae of Thanatophilus micans (Fabricius 1794) (Coleoptera: Silphidae) stored in 70% ethanol. International Journal of Legal Medicine. 2009b;123:103–108. doi: 10.1007/s00414-008-0260-4. PubMed DOI

Nabity PD, Higley LG, Heng-Moss TM. Effects of temperature on development of Phormia regina (Diptera: Calliphoridae) and use of developmental data in determining time intervals in forensic entomology. Journal of Medical Entomology. 2006;43:1276–1286. doi: 10.1603/0022-2585(2006)43[1276:EOTODO]2.0.CO;2. PubMed DOI

Nassu MP, Thyssen PJ, Linhares AX. Developmental rate of immatures of two fly species of forensic importance: Sarcophaga (Liopygia) ruficornis and Microcerella halli (Diptera: Sarcophagidae) Parasitology Research. 2014;113:217–222. doi: 10.1007/s00436-013-3646-2. PubMed DOI

Peck S. The life cycle of a Kentucky cave beetle, Ptomaphagus hirtus, (Coleoptera; Leiodidae; Catopinae) International Journal of Speleology. 1975;7:7–17. doi: 10.5038/1827-806X.7.1.2. DOI

Peck S, Anderson R. Taxonomy, phylogeny and biogeography of the carrion beetles of Latin America (Coleoptera: Silphidae) Quaestiones Entomologicae. 1985;21:247–317.

Peck SB, Cook J. Systematics, distributions, and bionomics of the small carrion beetles (Coleoptera: Leiodidae: Cholevinae: Cholevini) of North America. The Canadian Entomologist. 2002;134:723–787. doi: 10.4039/Ent134723-6. DOI

Perreau M. Family Leiodidae Fleming, 1821. In: Löbl I, Smetana A, editors. Catalogue of palaearctic coleoptera hydrophiloidea histeroidea staphylinoidea. Steensrup: Apollo Books; 2004. pp. 133–203.

R Core Team . R: a language and environmnet for statistical computing. Vienna: R Foundation for Statistical Computing; 2015. Available at https://www.R-project.org/

Richards CS, Crous KL, Villet MH. Models of development for blowfly sister species Chrysomya chloropyga and Chrysomya putoria. Medical and Veterinary Entomology. 2009;23:56–61. doi: 10.1111/j.1365-2915.2008.00767.x. PubMed DOI

Richards CS, Villet MH. Factors affecting accuracy and precision of thermal summation models of insect development used to estimate post-mortem intervals. International Journal of Legal Medicine. 2008;122:401–408. doi: 10.1007/s00414-008-0243-5. PubMed DOI

Ridgeway JA, Midgley JM, Collett IJ, Villet MH. Advantages of using development models of the carrion beetles Thanatophilus micans (Fabricius) and T. mutilatus (Castelneau) (Coleoptera: Silphidae) for estimating minimum post mortem intervals, verified with case data. International Journal of Legal Medicine. 2014;128:207–220. doi: 10.1007/s00414-013-0865-0. PubMed DOI

Růžička J. Seasonal activity and habitat associations of Silphidae and Leiodidae: Cholevinae (Coleoptera) in central Bohemia. Acta Societatis Zoologicae Bohemicae. 1994;58:67–78.

Růžička J, Schneider J. Family Silphidae Latreille, 1807. In: Löbl I, Smetana A, editors. Catalogue of palaearctic coleoptera, vol. 2: hydrophiloidea—histeroidea—staphylinoidea. Steenstrup: Apollo Books; 2004. pp. 229–237.

Schawaller W. Taxonomie und Faunistik der Gattung Thanatophilus (Coleoptera: Silphidae) Stutgarter Beiträge zur Naturkunde, Serie A (Biologie) 1981;351:1–21.

Schawaller W. Faunistische und systematische Daten zur Silphidae-Fauna Südafrikas (Coleoptera: Silphidae) Entomofauna. 1987;8:277–285.

Schilthuizen M, Scholte C, Wijk REJ, Van Dommershuijzen J, Horst D, Van der zu Schlochtern MM, Lievers R, Groenenberg DSJ. Using DNA-barcoding to make the necrobiont beetle family Cholevidae accessible for forensic entomology. Forensic Science International. 2011;210:91–95. doi: 10.1016/j.forsciint.2011.02.003. PubMed DOI

Stillwell RC, Fox CW. Geographic variation in body size, sexual size dimorphism and fitness components of a seed beetle: local adaptation versus phenotypic plasticity. Oikos. 2009;118:703–712. doi: 10.1111/j.1600-0706.2008.17327.x. DOI

Szymczakowski W. Warszawa: Państwowe Wydawnictvo Naukowe; 1961. Klucze do oznaczania owadów Polski, Część XIX chrząszcze—coleoptera, zeszyt 13 catopidae. (Keys to identification of Poland insects, Part XIX Beetles—Coleoptera, Issue 13 Small carrion beetles—Catopidae)).

Tarone AM, Foran DR. Gene expression during blow fly development: improving the precision of age estimates in forensic entomology. Journal of Forensic Sciences. 2011;56:S112–S122. doi: 10.1111/j.1556-4029.2010.01632.x. PubMed DOI

Tarone AM, Picard CJ, Spiegelman C, Foran DR. Population and temperature effects on Lucilia sericata (Diptera: Calliphoridae) body size and minimum development time. Journal of Medical Entomology. 2011;48:1062–1068. doi: 10.1603/ME11004. PubMed DOI

Topp W. Phenotypic plasticity and development of cold-season insects (Coleoptera: Leiodidae) and their response to climatic change. European Journal of Entomology. 2003;100:233–243. doi: 10.14411/eje.2003.038. DOI

Velásquez Y, Viloria AL. Effects of temperature on the development of the Neotropical carrion beetle Oxelytrum discicolle (Brullé, 1840) (Coleoptera: Silphidae) Forensic Science International. 2009;185:107–109. doi: 10.1016/j.forsciint.2008.12.020. PubMed DOI

Velásquez Y, Viloria AL. Instar determination of the neotropical beetle Oxelytrum discicolle (Coleoptera: Silphidae) Journal of Medical Entomology. 2010;47:723–726. doi: 10.1603/ME09058. PubMed DOI

Villet M. African carrion ecosystems and their insect communities in relation to forensic entomology. Pest Technology. 2011;5:1–15.

Villet MH, MacKenzie B, Muller WJ. Larval development of the carrion-breeding flesh fly, Sarcophaga (Liosarcophaga) tibialis Macquart (Diptera: Sarcophagidae), at constant temperatures. African Entomology. 2006;14:357–366.

Voss SC, Cook DF, Hung W-F, Dadour IR. Survival and development of the forensically important blow fly, Calliphora varifrons (Diptera: Calliphoridae) at constant temperatures. Forensic Science, Medicine, and Pathology. 2014;10:314–321. doi: 10.1007/s12024-014-9565-4. PubMed DOI

Voss SC, Spafford H, Dadour IR. Temperature-dependent development of the parasitoid Tachinaephagus zealandicus on five forensically important carrion fly species. Medical and Veterinary Entomology. 2010a;24:189–198. doi: 10.1111/j.1365-2915.2010.00865.x. PubMed DOI

Voss SC, Spafford H, Dadour IR. Temperature-dependant development of Nasonia vitripennis on five forensically important carrion fly species. Entomologia Experimentalis et Applicata. 2010b;135:37–47. doi: 10.1111/j.1570-7458.2010.00966.x. PubMed DOI

Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2009.

Wu L-H, Wang C-P, Wu W-J. Description and differentiation of the four larval instars of Acanthoscelides macrophthalmus (Coleoptera: Chrysomelidae: Bruchinae) Annals of the Entomological Society of America. 2012a;105:259–267. doi: 10.1603/AN11129. DOI

Wu L-H, Wang C-P, Wu W-J. Description and differentiation of the four larval instars of Acanthoscelides macrophthalmus (Coleoptera: Chrysomelidae: Bruchinae) Annals of the Entomological Society of America. 2012b;105:259–267. doi: 10.1603/AN11129. DOI

Zuha RM, Omar B. Developmental rate, size, and sexual dimorphism of Megaselia scalaris (Loew) (Diptera: Phoridae): its possible implications in forensic entomology. Parasitology Research. 2014;113:2285–2294. doi: 10.1007/s00436-014-3883-z. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...