Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Analyzing Wav2Vec 1.0 Embeddings for Cross-Database Parkinson's Disease Detection and Speech Features Extraction

O. Klempíř, R. Krupička

. 2024 ; 24 (17) : . [pub] 20240826

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24019269

Grantová podpora
LX22NPO5107 (Programme EXCELES, ID Project No. LX22NPO5107) - funded by the European Union - Next Generation EU.

Advancements in deep learning speech representations have facilitated the effective use of extensive unlabeled speech datasets for Parkinson's disease (PD) modeling with minimal annotated data. This study employs the non-fine-tuned wav2vec 1.0 architecture to develop machine learning models for PD speech diagnosis tasks, such as cross-database classification and regression to predict demographic and articulation characteristics. The primary aim is to analyze overlapping components within the embeddings on both classification and regression tasks, investigating whether latent speech representations in PD are shared across models, particularly for related tasks. Firstly, evaluation using three multi-language PD datasets showed that wav2vec accurately detected PD based on speech, outperforming feature extraction using mel-frequency cepstral coefficients in the proposed cross-database classification scenarios. In cross-database scenarios using Italian and English-read texts, wav2vec demonstrated performance comparable to intra-dataset evaluations. We also compared our cross-database findings against those of other related studies. Secondly, wav2vec proved effective in regression, modeling various quantitative speech characteristics related to articulation and aging. Ultimately, subsequent analysis of important features examined the presence of significant overlaps between classification and regression models. The feature importance experiments discovered shared features across trained models, with increased sharing for related tasks, further suggesting that wav2vec contributes to improved generalizability. The study proposes wav2vec embeddings as a next promising step toward a speech-based universal model to assist in the evaluation of PD.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24019269
003      
CZ-PrNML
005      
20241024111411.0
007      
ta
008      
241015s2024 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/s24175520 $2 doi
035    __
$a (PubMed)39275431
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Klempíř, Ondřej $u Department of Biomedical Informatics, Faculty of Biomedical Engineering, Czech Technical University in Prague, 16000 Prague, Czech Republic $1 https://orcid.org/0000000307735360
245    10
$a Analyzing Wav2Vec 1.0 Embeddings for Cross-Database Parkinson's Disease Detection and Speech Features Extraction / $c O. Klempíř, R. Krupička
520    9_
$a Advancements in deep learning speech representations have facilitated the effective use of extensive unlabeled speech datasets for Parkinson's disease (PD) modeling with minimal annotated data. This study employs the non-fine-tuned wav2vec 1.0 architecture to develop machine learning models for PD speech diagnosis tasks, such as cross-database classification and regression to predict demographic and articulation characteristics. The primary aim is to analyze overlapping components within the embeddings on both classification and regression tasks, investigating whether latent speech representations in PD are shared across models, particularly for related tasks. Firstly, evaluation using three multi-language PD datasets showed that wav2vec accurately detected PD based on speech, outperforming feature extraction using mel-frequency cepstral coefficients in the proposed cross-database classification scenarios. In cross-database scenarios using Italian and English-read texts, wav2vec demonstrated performance comparable to intra-dataset evaluations. We also compared our cross-database findings against those of other related studies. Secondly, wav2vec proved effective in regression, modeling various quantitative speech characteristics related to articulation and aging. Ultimately, subsequent analysis of important features examined the presence of significant overlaps between classification and regression models. The feature importance experiments discovered shared features across trained models, with increased sharing for related tasks, further suggesting that wav2vec contributes to improved generalizability. The study proposes wav2vec embeddings as a next promising step toward a speech-based universal model to assist in the evaluation of PD.
650    12
$a Parkinsonova nemoc $x patofyziologie $7 D010300
650    _2
$a lidé $7 D006801
650    12
$a řeč $x fyziologie $7 D013060
650    12
$a databáze faktografické $7 D016208
650    _2
$a deep learning $7 D000077321
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a senioři $7 D000368
650    _2
$a strojové učení $7 D000069550
650    _2
$a lidé středního věku $7 D008875
655    _2
$a časopisecké články $7 D016428
700    1_
$a Krupička, Radim $u Department of Biomedical Informatics, Faculty of Biomedical Engineering, Czech Technical University in Prague, 16000 Prague, Czech Republic $1 https://orcid.org/000000020280215X $7 xx0209817
773    0_
$w MED00008309 $t Sensors (Basel, Switzerland) $x 1424-8220 $g Roč. 24, č. 17 (2024)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39275431 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20241024111405 $b ABA008
999    __
$a ok $b bmc $g 2201857 $s 1231242
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 24 $c 17 $e 20240826 $i 1424-8220 $m Sensors (Basel, Switzerland) $n Sensors (Basel) $x MED00008309
GRA    __
$a LX22NPO5107 $p (Programme EXCELES, ID Project No. LX22NPO5107) - funded by the European Union - Next Generation EU.
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...