-
Je něco špatně v tomto záznamu ?
Analyzing Wav2Vec 1.0 Embeddings for Cross-Database Parkinson's Disease Detection and Speech Features Extraction
O. Klempíř, R. Krupička
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5107
(Programme EXCELES, ID Project No. LX22NPO5107) - funded by the European Union - Next Generation EU.
NLK
Directory of Open Access Journals
od 2001
PubMed Central
od 2003
Europe PubMed Central
od 2003
ProQuest Central
od 2001-01-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2003-01-01
Health & Medicine (ProQuest)
od 2001-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2001
PubMed
39275431
DOI
10.3390/s24175520
Knihovny.cz E-zdroje
- MeSH
- databáze faktografické * MeSH
- deep learning MeSH
- lidé středního věku MeSH
- lidé MeSH
- Parkinsonova nemoc * patofyziologie MeSH
- řeč * fyziologie MeSH
- senioři MeSH
- strojové učení MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Advancements in deep learning speech representations have facilitated the effective use of extensive unlabeled speech datasets for Parkinson's disease (PD) modeling with minimal annotated data. This study employs the non-fine-tuned wav2vec 1.0 architecture to develop machine learning models for PD speech diagnosis tasks, such as cross-database classification and regression to predict demographic and articulation characteristics. The primary aim is to analyze overlapping components within the embeddings on both classification and regression tasks, investigating whether latent speech representations in PD are shared across models, particularly for related tasks. Firstly, evaluation using three multi-language PD datasets showed that wav2vec accurately detected PD based on speech, outperforming feature extraction using mel-frequency cepstral coefficients in the proposed cross-database classification scenarios. In cross-database scenarios using Italian and English-read texts, wav2vec demonstrated performance comparable to intra-dataset evaluations. We also compared our cross-database findings against those of other related studies. Secondly, wav2vec proved effective in regression, modeling various quantitative speech characteristics related to articulation and aging. Ultimately, subsequent analysis of important features examined the presence of significant overlaps between classification and regression models. The feature importance experiments discovered shared features across trained models, with increased sharing for related tasks, further suggesting that wav2vec contributes to improved generalizability. The study proposes wav2vec embeddings as a next promising step toward a speech-based universal model to assist in the evaluation of PD.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24019269
- 003
- CZ-PrNML
- 005
- 20241024111411.0
- 007
- ta
- 008
- 241015s2024 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/s24175520 $2 doi
- 035 __
- $a (PubMed)39275431
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Klempíř, Ondřej $u Department of Biomedical Informatics, Faculty of Biomedical Engineering, Czech Technical University in Prague, 16000 Prague, Czech Republic $1 https://orcid.org/0000000307735360
- 245 10
- $a Analyzing Wav2Vec 1.0 Embeddings for Cross-Database Parkinson's Disease Detection and Speech Features Extraction / $c O. Klempíř, R. Krupička
- 520 9_
- $a Advancements in deep learning speech representations have facilitated the effective use of extensive unlabeled speech datasets for Parkinson's disease (PD) modeling with minimal annotated data. This study employs the non-fine-tuned wav2vec 1.0 architecture to develop machine learning models for PD speech diagnosis tasks, such as cross-database classification and regression to predict demographic and articulation characteristics. The primary aim is to analyze overlapping components within the embeddings on both classification and regression tasks, investigating whether latent speech representations in PD are shared across models, particularly for related tasks. Firstly, evaluation using three multi-language PD datasets showed that wav2vec accurately detected PD based on speech, outperforming feature extraction using mel-frequency cepstral coefficients in the proposed cross-database classification scenarios. In cross-database scenarios using Italian and English-read texts, wav2vec demonstrated performance comparable to intra-dataset evaluations. We also compared our cross-database findings against those of other related studies. Secondly, wav2vec proved effective in regression, modeling various quantitative speech characteristics related to articulation and aging. Ultimately, subsequent analysis of important features examined the presence of significant overlaps between classification and regression models. The feature importance experiments discovered shared features across trained models, with increased sharing for related tasks, further suggesting that wav2vec contributes to improved generalizability. The study proposes wav2vec embeddings as a next promising step toward a speech-based universal model to assist in the evaluation of PD.
- 650 12
- $a Parkinsonova nemoc $x patofyziologie $7 D010300
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a řeč $x fyziologie $7 D013060
- 650 12
- $a databáze faktografické $7 D016208
- 650 _2
- $a deep learning $7 D000077321
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a lidé středního věku $7 D008875
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Krupička, Radim $u Department of Biomedical Informatics, Faculty of Biomedical Engineering, Czech Technical University in Prague, 16000 Prague, Czech Republic $1 https://orcid.org/000000020280215X $7 xx0209817
- 773 0_
- $w MED00008309 $t Sensors (Basel, Switzerland) $x 1424-8220 $g Roč. 24, č. 17 (2024)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39275431 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20241015 $b ABA008
- 991 __
- $a 20241024111405 $b ABA008
- 999 __
- $a ok $b bmc $g 2201857 $s 1231242
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 24 $c 17 $e 20240826 $i 1424-8220 $m Sensors (Basel, Switzerland) $n Sensors (Basel) $x MED00008309
- GRA __
- $a LX22NPO5107 $p (Programme EXCELES, ID Project No. LX22NPO5107) - funded by the European Union - Next Generation EU.
- LZP __
- $a Pubmed-20241015