-
Je něco špatně v tomto záznamu ?
Evolutionary insights into sequence modifications governing chitin recognition and chitinase inactivity in YKL-40 (HC-gp39, CHI3L1)
K. Suzuki, K. Okawa, M. Ohkura, T. Kanaizumi, T. Kobayashi, K. Takahashi, H. Takei, M. Otsuka, E. Tabata, PO. Bauer, F. Oyama
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2021
Free Medical Journals
od 2008 do Před 1 rokem
Freely Accessible Science Journals
od 1905 do Před 1 rokem
PubMed Central
od 2005
Europe PubMed Central
od 2005 do Před 1 rokem
Open Access Digital Library
od 1905-10-01
Open Access Digital Library
od 1905-10-01
ROAD: Directory of Open Access Scholarly Resources
od 1905
- MeSH
- chitin * metabolismus chemie MeSH
- chitinasy metabolismus genetika chemie MeSH
- exony MeSH
- hexosaminidasy metabolismus chemie genetika MeSH
- katalytická doména MeSH
- lidé MeSH
- molekulární evoluce MeSH
- protein CHI3L1 * metabolismus genetika chemie MeSH
- sekvence aminokyselin MeSH
- substituce aminokyselin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
YKL-40, also known as human cartilage glycoprotein-39 (HC-gp39) or CHI3L1, shares structural similarities with chitotriosidase (CHIT1), an active chitinase, but lacks chitinase activity. Despite being a biomarker for inflammatory disorders and cancer, the reasons for YKL-40's inert chitinase function have remained elusive. This study reveals that the loss of chitinase activity in YKL-40 has risen from multiple sequence modifications influencing its chitin affinity. Contrary to the common belief associating the lack of chitinase activity with amino acid substitutions in the catalytic motif, attempts to activate YKL-40 by creating two amino acid mutations in the catalytic motif (MT-YKL-40) proved ineffective. Subsequent exploration that included creating chimeras of MT-YKL-40 and CHIT1 catalytic domains (CatDs) identified key exons responsible for YKL-40 inactivation. Introducing YKL-40 exons 3, 6, or 8 into CHIT1 CatD resulted in chitinase inactivation. Conversely, incorporating CHIT1 exons 3, 6, and 8 into MT-YKL-40 led to its activation. Our recombinant proteins exhibited properly formed disulfide bonds, affirming a defined structure in active molecules. Biochemical and evolutionary analysis indicated that the reduced chitinase activity of MT-YKL-40 correlates with specific amino acids in exon 3. M61I and T69W substitutions in CHIT1 CatD diminished chitinase activity and increased chitin binding. Conversely, substituting I61 with M and W69 with T in MT-YKL-40 triggered chitinase activity while reducing the chitin-binding activity. Thus, W69 plays a crucial role in a unique subsite within YKL-40. These findings emphasize that YKL-40, though retaining the structural framework of a mammalian chitinase, has evolved to recognize chitin while surrendering chitinase activity.
Bioinova a s Prague Czech Republic
Department of Chemistry and Life Science Kogakuin University Hachioji Tokyo Japan
Research Fellow of Japan Society for the Promotion of Science Chiyoda ku Tokyo Japan
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24019990
- 003
- CZ-PrNML
- 005
- 20241024110919.0
- 007
- ta
- 008
- 241015s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jbc.2024.107365 $2 doi
- 035 __
- $a (PubMed)38750795
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Suzuki, Keita $u Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
- 245 10
- $a Evolutionary insights into sequence modifications governing chitin recognition and chitinase inactivity in YKL-40 (HC-gp39, CHI3L1) / $c K. Suzuki, K. Okawa, M. Ohkura, T. Kanaizumi, T. Kobayashi, K. Takahashi, H. Takei, M. Otsuka, E. Tabata, PO. Bauer, F. Oyama
- 520 9_
- $a YKL-40, also known as human cartilage glycoprotein-39 (HC-gp39) or CHI3L1, shares structural similarities with chitotriosidase (CHIT1), an active chitinase, but lacks chitinase activity. Despite being a biomarker for inflammatory disorders and cancer, the reasons for YKL-40's inert chitinase function have remained elusive. This study reveals that the loss of chitinase activity in YKL-40 has risen from multiple sequence modifications influencing its chitin affinity. Contrary to the common belief associating the lack of chitinase activity with amino acid substitutions in the catalytic motif, attempts to activate YKL-40 by creating two amino acid mutations in the catalytic motif (MT-YKL-40) proved ineffective. Subsequent exploration that included creating chimeras of MT-YKL-40 and CHIT1 catalytic domains (CatDs) identified key exons responsible for YKL-40 inactivation. Introducing YKL-40 exons 3, 6, or 8 into CHIT1 CatD resulted in chitinase inactivation. Conversely, incorporating CHIT1 exons 3, 6, and 8 into MT-YKL-40 led to its activation. Our recombinant proteins exhibited properly formed disulfide bonds, affirming a defined structure in active molecules. Biochemical and evolutionary analysis indicated that the reduced chitinase activity of MT-YKL-40 correlates with specific amino acids in exon 3. M61I and T69W substitutions in CHIT1 CatD diminished chitinase activity and increased chitin binding. Conversely, substituting I61 with M and W69 with T in MT-YKL-40 triggered chitinase activity while reducing the chitin-binding activity. Thus, W69 plays a crucial role in a unique subsite within YKL-40. These findings emphasize that YKL-40, though retaining the structural framework of a mammalian chitinase, has evolved to recognize chitin while surrendering chitinase activity.
- 650 12
- $a protein CHI3L1 $x metabolismus $x genetika $x chemie $7 D000071451
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a chitin $x metabolismus $x chemie $7 D002686
- 650 _2
- $a chitinasy $x metabolismus $x genetika $x chemie $7 D002688
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 _2
- $a hexosaminidasy $x metabolismus $x chemie $x genetika $7 D006596
- 650 _2
- $a katalytická doména $7 D020134
- 650 _2
- $a substituce aminokyselin $7 D019943
- 650 _2
- $a exony $7 D005091
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Okawa, Kazuaki $u Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
- 700 1_
- $a Ohkura, Masashi $u Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
- 700 1_
- $a Kanaizumi, Tomoki $u Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
- 700 1_
- $a Kobayashi, Takaki $u Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
- 700 1_
- $a Takahashi, Koro $u Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
- 700 1_
- $a Takei, Hiromu $u Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
- 700 1_
- $a Otsuka, Momo $u Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
- 700 1_
- $a Tabata, Eri $u Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan; Research Fellow of Japan Society for the Promotion of Science (PD), Chiyoda-ku, Tokyo, Japan
- 700 1_
- $a Bauer, Peter O $u Bioinova a.s., Prague, Czech Republic
- 700 1_
- $a Oyama, Fumitaka $u Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan. Electronic address: f-oyama@cc.kogakuin.ac.jp
- 773 0_
- $w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 300, č. 6 (2024), s. 107365
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38750795 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20241015 $b ABA008
- 991 __
- $a 20241024110913 $b ABA008
- 999 __
- $a ok $b bmc $g 2202306 $s 1231963
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 300 $c 6 $d 107365 $e 20240513 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
- LZP __
- $a Pubmed-20241015