Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Effect of Cryoprotectants on Long-Term Storage of Oral Mucosal Epithelial Cells: Implications for Stem Cell Preservation and Proliferation Status

JV. Cabral, N. Smorodinová, E. Voukali, L. Balogh, T. Kučera, V. Kolín, P. Studený, T. Vacík, K. Jirsová

. 2024 ; 70 (4) : 209-218. [pub] -

Language English Country Czech Republic

Document type Journal Article

Grant support
TO01000099 Norway Grants
BBMRI_CZ LM2023033 Ministerstvo Školství, Mládeže a Tělovýchovy
Progres-Q25 Univerzita Karlova v Praze

In this study, we tested a method for long-term storage of oral mucosal epithelial cells (OMECs) so that the cells could be expanded in vitro after cryopreservation and used for the treatment of bilateral limbal stem cell deficiency. The ability of suspended primary OMECs to proliferate in vitro after cryopreservation was compared to that of OMEC cultures that had undergone the same process. Both were preserved in standard complex medium (COM) with or without cryoprotective agents (CPAs) (gly-cerol at 5 % or 10 % or dimethyl sulphoxide at 10 %). We found that after cryopreservation, primary OMECs could form a confluent cell sheet only in a few samples after 22 ± 2.9 (mean ± SD) days of cultivation with 72.4 % ± 12.9 % overall viability. Instead, all ex vivo OMEC cultures could re-expand after cryopreservation with a comparable viability of 78.6 ± 13.8 %, like primary OMECs, but with significantly faster growth rate (adj. P < 001), forming a confluent cell sheet at 13.7 ± 3.9 days. Gene expression analyses of the ex vivo expansion of OMEC cultures showed that the stemness, proliferation and differentiation-related gene expression was similar before and after cryopreservation, except for KRT13 expres-sion, which significantly decreased after the second passage (adj. P < 0.05). The addition of CPAs had no effect on these outcomes. In conclusion, the optimal strategy for OMEC preservation is to freeze the cells that have been previously cultured, in order to maintain cell viability and the capacity to create a sizable graft even without CPAs.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25000295
003      
CZ-PrNML
005      
20250110125102.0
007      
ta
008      
250107s2024 xr f 000 0|eng||
009      
AR
024    7_
$a 10.14712/fb2024070040209 $2 doi
035    __
$a (PubMed)39692575
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xr
100    1_
$a Cabral, Joao Victor $u Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
245    10
$a Effect of Cryoprotectants on Long-Term Storage of Oral Mucosal Epithelial Cells: Implications for Stem Cell Preservation and Proliferation Status / $c JV. Cabral, N. Smorodinová, E. Voukali, L. Balogh, T. Kučera, V. Kolín, P. Studený, T. Vacík, K. Jirsová
520    9_
$a In this study, we tested a method for long-term storage of oral mucosal epithelial cells (OMECs) so that the cells could be expanded in vitro after cryopreservation and used for the treatment of bilateral limbal stem cell deficiency. The ability of suspended primary OMECs to proliferate in vitro after cryopreservation was compared to that of OMEC cultures that had undergone the same process. Both were preserved in standard complex medium (COM) with or without cryoprotective agents (CPAs) (gly-cerol at 5 % or 10 % or dimethyl sulphoxide at 10 %). We found that after cryopreservation, primary OMECs could form a confluent cell sheet only in a few samples after 22 ± 2.9 (mean ± SD) days of cultivation with 72.4 % ± 12.9 % overall viability. Instead, all ex vivo OMEC cultures could re-expand after cryopreservation with a comparable viability of 78.6 ± 13.8 %, like primary OMECs, but with significantly faster growth rate (adj. P &lt; 001), forming a confluent cell sheet at 13.7 ± 3.9 days. Gene expression analyses of the ex vivo expansion of OMEC cultures showed that the stemness, proliferation and differentiation-related gene expression was similar before and after cryopreservation, except for KRT13 expres-sion, which significantly decreased after the second passage (adj. P &lt; 0.05). The addition of CPAs had no effect on these outcomes. In conclusion, the optimal strategy for OMEC preservation is to freeze the cells that have been previously cultured, in order to maintain cell viability and the capacity to create a sizable graft even without CPAs.
650    12
$a ústní sliznice $x cytologie $x účinky léků $7 D009061
650    12
$a proliferace buněk $x účinky léků $7 D049109
650    12
$a epitelové buňky $x účinky léků $x cytologie $x metabolismus $7 D004847
650    12
$a kryoprotektivní látky $x farmakologie $7 D003451
650    _2
$a lidé $7 D006801
650    12
$a kmenové buňky $x účinky léků $x cytologie $x metabolismus $7 D013234
650    12
$a kryoprezervace $x metody $7 D015925
650    _2
$a viabilita buněk $x účinky léků $7 D002470
650    _2
$a kultivované buňky $7 D002478
650    _2
$a regulace genové exprese $x účinky léků $7 D005786
650    _2
$a časové faktory $7 D013997
650    _2
$a buněčná diferenciace $x účinky léků $7 D002454
650    _2
$a mužské pohlaví $7 D008297
655    _2
$a časopisecké články $7 D016428
700    1_
$a Smorodinová, N. $7 _AN077995 $u Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic $u Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Voukali, Eleni $u Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
700    1_
$a Balogh, Lukáš $7 xx0314475 $u Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
700    1_
$a Kučera, Tomáš $7 xx0086044 $u Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Kolín, Vojtěch, $d 1922-2008 $7 xx0107205 $u Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
700    1_
$a Studený, Pavel, $d 1968- $7 xx0098109 $u Department of Ophthalmology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
700    1_
$a Vacík, Tomáš $7 xx0301878 $u Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
700    1_
$a Jirsová, Kateřina, $d 1966- $7 xx0101780 $u Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic. katerina.jirsova@lf1.cuni.cz
773    0_
$w MED00011004 $t Folia biologica $x 0015-5500 $g Roč. 70, č. 4 (2024), s. 209-218
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39692575 $y Pubmed
910    __
$a ABA008 $b A 970 $c 89 $y p $z 0
990    __
$a 20250107 $b ABA008
991    __
$a 20250110125055 $b ABA008
999    __
$a ok $b bmc $g 2247180 $s 1236295
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 70 $c 4 $d 209-218 $e - $i 0015-5500 $m Folia biologica $n Folia Biol (Praha) $x MED00011004
GRA    __
$a TO01000099 $p Norway Grants
GRA    __
$a BBMRI_CZ LM2023033 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a Progres-Q25 $p Univerzita Karlova v Praze
LZP    __
$b NLK138 $a Pubmed-20250107

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...