-
Je něco špatně v tomto záznamu ?
QSPRpred: a Flexible Open-Source Quantitative Structure-Property Relationship Modelling Tool
HW. van den Maagdenberg, M. Šícho, DA. Araripe, S. Luukkonen, L. Schoenmaker, M. Jespers, OJM. Béquignon, MG. González, RL. van den Broek, A. Bernatavicius, JGC. van Hasselt, PH. van der Graaf, GJP. van Westen
Status neindexováno Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
Grantová podpora
22-17367O
Czech Science Foundation Grant
LM2023052
Ministry of Education, Youth and Sports of the Czech Republic
955879
HORIZON EUROPE Marie Sklodowska-Curie Actions
NGFOP2201
Dutch National Growth Fund
NLK
BioMedCentral
od 2009-12-01
BioMedCentral Open Access
od 2009
Directory of Open Access Journals
od 2009
Free Medical Journals
od 2009
PubMed Central
od 2009
Europe PubMed Central
od 2009
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2009-01-01
Open Access Digital Library
od 2009-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2009
Springer Journals Complete - Open Access
od 2009-01-12
Springer Nature OA/Free Journals
od 2009-12-01
Springer Nature OA/Free Journals
od 2009-01-12
- Publikační typ
- časopisecké články MeSH
Building reliable and robust quantitative structure-property relationship (QSPR) models is a challenging task. First, the experimental data needs to be obtained, analyzed and curated. Second, the number of available methods is continuously growing and evaluating different algorithms and methodologies can be arduous. Finally, the last hurdle that researchers face is to ensure the reproducibility of their models and facilitate their transferability into practice. In this work, we introduce QSPRpred, a toolkit for analysis of bioactivity data sets and QSPR modelling, which attempts to address the aforementioned challenges. QSPRpred's modular Python API enables users to intuitively describe different parts of a modelling workflow using a plethora of pre-implemented components, but also integrates customized implementations in a "plug-and-play" manner. QSPRpred data sets and models are directly serializable, which means they can be readily reproduced and put into operation after training as the models are saved with all required data pre-processing steps to make predictions on new compounds directly from SMILES strings. The general-purpose character of QSPRpred is also demonstrated by inclusion of support for multi-task and proteochemometric modelling. The package is extensively documented and comes with a large collection of tutorials to help new users. In this paper, we describe all of QSPRpred's functionalities and also conduct a small benchmarking case study to illustrate how different components can be leveraged to compare a diverse set of models. QSPRpred is fully open-source and available at https://github.com/CDDLeiden/QSPRpred .Scientific ContributionQSPRpred aims to provide a complex, but comprehensive Python API to conduct all tasks encountered in QSPR modelling from data preparation and analysis to model creation and model deployment. In contrast to similar packages, QSPRpred offers a wider and more exhaustive range of capabilities and integrations with many popular packages that also go beyond QSPR modelling. A significant contribution of QSPRpred is also in its automated and highly standardized serialization scheme, which significantly improves reproducibility and transferability of models.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25002139
- 003
- CZ-PrNML
- 005
- 20250123102015.0
- 007
- ta
- 008
- 250117s2024 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s13321-024-00908-y $2 doi
- 035 __
- $a (PubMed)39543652
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a van den Maagdenberg, Helle W $u Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands $1 https://orcid.org/0000000297187806
- 245 10
- $a QSPRpred: a Flexible Open-Source Quantitative Structure-Property Relationship Modelling Tool / $c HW. van den Maagdenberg, M. Šícho, DA. Araripe, S. Luukkonen, L. Schoenmaker, M. Jespers, OJM. Béquignon, MG. González, RL. van den Broek, A. Bernatavicius, JGC. van Hasselt, PH. van der Graaf, GJP. van Westen
- 520 9_
- $a Building reliable and robust quantitative structure-property relationship (QSPR) models is a challenging task. First, the experimental data needs to be obtained, analyzed and curated. Second, the number of available methods is continuously growing and evaluating different algorithms and methodologies can be arduous. Finally, the last hurdle that researchers face is to ensure the reproducibility of their models and facilitate their transferability into practice. In this work, we introduce QSPRpred, a toolkit for analysis of bioactivity data sets and QSPR modelling, which attempts to address the aforementioned challenges. QSPRpred's modular Python API enables users to intuitively describe different parts of a modelling workflow using a plethora of pre-implemented components, but also integrates customized implementations in a "plug-and-play" manner. QSPRpred data sets and models are directly serializable, which means they can be readily reproduced and put into operation after training as the models are saved with all required data pre-processing steps to make predictions on new compounds directly from SMILES strings. The general-purpose character of QSPRpred is also demonstrated by inclusion of support for multi-task and proteochemometric modelling. The package is extensively documented and comes with a large collection of tutorials to help new users. In this paper, we describe all of QSPRpred's functionalities and also conduct a small benchmarking case study to illustrate how different components can be leveraged to compare a diverse set of models. QSPRpred is fully open-source and available at https://github.com/CDDLeiden/QSPRpred .Scientific ContributionQSPRpred aims to provide a complex, but comprehensive Python API to conduct all tasks encountered in QSPR modelling from data preparation and analysis to model creation and model deployment. In contrast to similar packages, QSPRpred offers a wider and more exhaustive range of capabilities and integrations with many popular packages that also go beyond QSPR modelling. A significant contribution of QSPRpred is also in its automated and highly standardized serialization scheme, which significantly improves reproducibility and transferability of models.
- 590 __
- $a NEINDEXOVÁNO
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Šícho, Martin $u Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands $u CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague, A-4040, Czech Republic $1 https://orcid.org/0000000287711731 $7 xx0222821
- 700 1_
- $a Araripe, David Alencar $u Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands $u Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, Leiden, 2333ZC, The Netherlands $1 https://orcid.org/0000000251041959
- 700 1_
- $a Luukkonen, Sohvi $u Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands $u ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University, Altenberger Straße 69, Linz, 610101, Austria $1 https://orcid.org/0000000193871427
- 700 1_
- $a Schoenmaker, Linde $u Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands $1 https://orcid.org/0000000198791004
- 700 1_
- $a Jespers, Michiel $u Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands $1 https://orcid.org/0009000320830159
- 700 1_
- $a Béquignon, Olivier J M $u Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands $u Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands $1 https://orcid.org/0000000275549220
- 700 1_
- $a González, Marina Gorostiola $u Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands $u Oncode Institute, Utrecht, The Netherlands $1 https://orcid.org/0000000315680881
- 700 1_
- $a van den Broek, Remco L $u Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands $1 https://orcid.org/0009000856611157
- 700 1_
- $a Bernatavicius, Andrius $u Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands $u Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1, Leiden, 2333 CA, The Netherlands $1 https://orcid.org/0000000200583678
- 700 1_
- $a van Hasselt, J G Coen $u Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands $1 https://orcid.org/0000000216647314
- 700 1_
- $a van der Graaf, Piet H $u Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands $u Certara UK, University Road, Canterbury Innovation Centre, Unit 43, Canterbury, Kent, CT2 7FG, UK $1 https://orcid.org/0000000313143484
- 700 1_
- $a van Westen, Gerard J P $u Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands. gerard@lacdr.leidenuniv.nl $1 https://orcid.org/0000000307171817
- 773 0_
- $w MED00181723 $t Journal of cheminformatics $x 1758-2946 $g Roč. 16, č. 1 (2024), s. 128
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39543652 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250117 $b ABA008
- 991 __
- $a 20250123102009 $b ABA008
- 999 __
- $a ok $b bmc $g 2254483 $s 1238142
- BAS __
- $a 3
- BAS __
- $a PreBMC-PubMed-not-MEDLINE
- BMC __
- $a 2024 $b 16 $c 1 $d 128 $e 20241114 $i 1758-2946 $m Journal of cheminformatics $n J Cheminform $x MED00181723
- GRA __
- $a 22-17367O $p Czech Science Foundation Grant
- GRA __
- $a LM2023052 $p Ministry of Education, Youth and Sports of the Czech Republic
- GRA __
- $a 955879 $p HORIZON EUROPE Marie Sklodowska-Curie Actions
- GRA __
- $a NGFOP2201 $p Dutch National Growth Fund
- LZP __
- $a Pubmed-20250117