• Something wrong with this record ?

Deuterium Metabolic Imaging Enables the Tracing of Substrate Fluxes Through the Tricarboxylic Acid Cycle in the Liver

V. Ehret, SC. Dürr, U. Ustsinau, J. Friske, T. Scherer, C. Fürnsinn, J. Starčuková, TH. Helbich, C. Philippe, M. Krššák

. 2025 ; 38 (1) : e5309. [pub] -

Language English Country England, Great Britain

Document type Journal Article

Grant support
WWTF #LS19-046 Vienna Science and Technology Fund

Alterations in tricarboxylic acid (TCA) cycle metabolism are associated with hepatic metabolic disorders. Elevated hepatic acetate concentrations, often attributed to high caloric intake, are recognized as a pivotal factor in the etiology of obesity and metabolic syndrome. Therefore, the assessment of acetate breakdown and TCA cycle activity plays a central role in understanding the impact of diet-induced alterations on liver metabolism. Magnetic resonance-based deuterium metabolic imaging (DMI) could help to unravel the underlying mechanisms involved in disease development and progression, however, the application of conventional deuterated glucose does not lead to substantial enrichment in hepatic glutamine and glutamate. This study aimed to demonstrate the feasibility of DMI for tracking deuterated acetate breakdown via the TCA cycle in lean and diet-induced fatty liver (FL) rats using 3D DMI after an intraperitoneal infusion of sodium acetate-d3 at 9.4T. Localized and nonlocalized liver spectra acquired at 10 time points post-injection over a 130-min study revealed similar intrahepatic acetate uptake in both animal groups (AUCFL = 717.9 ± 131.1 mM▯min-1, AUClean = 605.1 ± 119.9 mM▯min-1, p = 0.62). Metabolic breakdown could be observed in both groups with an emerging glutamine/glutamate (Glx) peak as a downstream metabolic product (AUCFL = 113.6 ± 23.8 mM▯min-1, AUClean = 136.7 ± 41.7 mM▯min-1, p = 0.68). This study showed the viability of DMI for tracking substrate flux through the TCA cycle, underscoring its methodological potential for imaging metabolic processes in the body.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25002853
003      
CZ-PrNML
005      
20250206103915.0
007      
ta
008      
250121s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1002/nbm.5309 $2 doi
035    __
$a (PubMed)39676029
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Ehret, Viktoria $u Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria $1 https://orcid.org/0000000314878693
245    10
$a Deuterium Metabolic Imaging Enables the Tracing of Substrate Fluxes Through the Tricarboxylic Acid Cycle in the Liver / $c V. Ehret, SC. Dürr, U. Ustsinau, J. Friske, T. Scherer, C. Fürnsinn, J. Starčuková, TH. Helbich, C. Philippe, M. Krššák
520    9_
$a Alterations in tricarboxylic acid (TCA) cycle metabolism are associated with hepatic metabolic disorders. Elevated hepatic acetate concentrations, often attributed to high caloric intake, are recognized as a pivotal factor in the etiology of obesity and metabolic syndrome. Therefore, the assessment of acetate breakdown and TCA cycle activity plays a central role in understanding the impact of diet-induced alterations on liver metabolism. Magnetic resonance-based deuterium metabolic imaging (DMI) could help to unravel the underlying mechanisms involved in disease development and progression, however, the application of conventional deuterated glucose does not lead to substantial enrichment in hepatic glutamine and glutamate. This study aimed to demonstrate the feasibility of DMI for tracking deuterated acetate breakdown via the TCA cycle in lean and diet-induced fatty liver (FL) rats using 3D DMI after an intraperitoneal infusion of sodium acetate-d3 at 9.4T. Localized and nonlocalized liver spectra acquired at 10 time points post-injection over a 130-min study revealed similar intrahepatic acetate uptake in both animal groups (AUCFL = 717.9 ± 131.1 mM▯min-1, AUClean = 605.1 ± 119.9 mM▯min-1, p = 0.62). Metabolic breakdown could be observed in both groups with an emerging glutamine/glutamate (Glx) peak as a downstream metabolic product (AUCFL = 113.6 ± 23.8 mM▯min-1, AUClean = 136.7 ± 41.7 mM▯min-1, p = 0.68). This study showed the viability of DMI for tracking substrate flux through the TCA cycle, underscoring its methodological potential for imaging metabolic processes in the body.
650    _2
$a zvířata $7 D000818
650    12
$a citrátový cyklus $7 D002952
650    12
$a játra $x metabolismus $x diagnostické zobrazování $7 D008099
650    _2
$a mužské pohlaví $7 D008297
650    12
$a deuterium $7 D003903
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a potkani Sprague-Dawley $7 D017207
650    _2
$a acetáty $x metabolismus $7 D000085
650    _2
$a potkani Wistar $7 D017208
650    _2
$a analýza metabolického toku $7 D064688
655    _2
$a časopisecké články $7 D016428
700    1_
$a Dürr, Sabine C $u Imaging Unit CIUS, Faculty of Life Sciences, University of Vienna, Vienna, Austria
700    1_
$a Ustsinau, Usevalad $u Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
700    1_
$a Friske, Joachim $u Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
700    1_
$a Scherer, Thomas $u Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
700    1_
$a Fürnsinn, Clemens $u Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
700    1_
$a Starčuková, Jana $u Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic $1 https://orcid.org/0000000303377893 $7 xx0081879
700    1_
$a Helbich, Thomas H $u Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
700    1_
$a Philippe, Cécile $u Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
700    1_
$a Krššák, Martin $u Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria $1 https://orcid.org/000000019717803X $7 xx0240325
773    0_
$w MED00003529 $t NMR in biomedicine $x 1099-1492 $g Roč. 38, č. 1 (2025), s. e5309
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39676029 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206103911 $b ABA008
999    __
$a ok $b bmc $g 2262946 $s 1238860
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 38 $c 1 $d e5309 $e - $i 1099-1492 $m NMR in biomedicine $n NMR Biomed $x MED00003529
GRA    __
$a WWTF #LS19-046 $p Vienna Science and Technology Fund
LZP    __
$a Pubmed-20250121

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...