-
Je něco špatně v tomto záznamu ?
Radiomics of pituitary adenoma using computer vision: a review
T. Zilka, W. Benesova
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, přehledy, systematický přehled
NLK
ProQuest Central
od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2003-01-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest)
od 1997-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-01-01 do Před 1 rokem
- MeSH
- adenom * diagnostické zobrazování MeSH
- deep learning MeSH
- lidé MeSH
- nádory hypofýzy * diagnostické zobrazování MeSH
- počítačové zpracování obrazu metody MeSH
- radiomika MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- systematický přehled MeSH
Pituitary adenomas (PA) represent the most common type of sellar neoplasm. Extracting relevant information from radiological images is essential for decision support in addressing various objectives related to PA. Given the critical need for an accurate assessment of the natural progression of PA, computer vision (CV) and artificial intelligence (AI) play a pivotal role in automatically extracting features from radiological images. The field of "Radiomics" involves the extraction of high-dimensional features, often referred to as "Radiomic features," from digital radiological images. This survey offers an analysis of the current state of research in PA radiomics. Our work comprises a systematic review of 34 publications focused on PA radiomics and other automated information mining pertaining to PA through the analysis of radiological data using computer vision methods. We begin with a theoretical exploration essential for understanding the theoretical background of radionmics, encompassing traditional approaches from computer vision and machine learning, as well as the latest methodologies in deep radiomics utilizing deep learning (DL). Thirty-four research works under examination are comprehensively compared and evaluated. The overall results achieved in the analyzed papers are high, e.g., the best accuracy is up to 96% and the best achieved AUC is up to 0.99, which establishes optimism for the successful use of radiomic features. Methods based on deep learning seem to be the most promising for the future. In relation to this perspective DL methods, several challenges are remarkable: It is important to create high-quality and sufficiently extensive datasets necessary for training deep neural networks. Interpretability of deep radiomics is also a big open challenge. It is necessary to develop and verify methods that will explain to us how deep radiomic features reflect various physics-explainable aspects.
Masaryk University Brno Czech Republic
Saint Michal's Hospital Bratislava Slovakia
Slovak University of Technology in Bratislava Bratislava Slovakia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25003318
- 003
- CZ-PrNML
- 005
- 20250206104243.0
- 007
- ta
- 008
- 250121s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s11517-024-03163-3 $2 doi
- 035 __
- $a (PubMed)39012416
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Zilka, Tomas $u Saint Michal's Hospital, Bratislava, Slovakia $u Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000176487298
- 245 10
- $a Radiomics of pituitary adenoma using computer vision: a review / $c T. Zilka, W. Benesova
- 520 9_
- $a Pituitary adenomas (PA) represent the most common type of sellar neoplasm. Extracting relevant information from radiological images is essential for decision support in addressing various objectives related to PA. Given the critical need for an accurate assessment of the natural progression of PA, computer vision (CV) and artificial intelligence (AI) play a pivotal role in automatically extracting features from radiological images. The field of "Radiomics" involves the extraction of high-dimensional features, often referred to as "Radiomic features," from digital radiological images. This survey offers an analysis of the current state of research in PA radiomics. Our work comprises a systematic review of 34 publications focused on PA radiomics and other automated information mining pertaining to PA through the analysis of radiological data using computer vision methods. We begin with a theoretical exploration essential for understanding the theoretical background of radionmics, encompassing traditional approaches from computer vision and machine learning, as well as the latest methodologies in deep radiomics utilizing deep learning (DL). Thirty-four research works under examination are comprehensively compared and evaluated. The overall results achieved in the analyzed papers are high, e.g., the best accuracy is up to 96% and the best achieved AUC is up to 0.99, which establishes optimism for the successful use of radiomic features. Methods based on deep learning seem to be the most promising for the future. In relation to this perspective DL methods, several challenges are remarkable: It is important to create high-quality and sufficiently extensive datasets necessary for training deep neural networks. Interpretability of deep radiomics is also a big open challenge. It is necessary to develop and verify methods that will explain to us how deep radiomic features reflect various physics-explainable aspects.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a nádory hypofýzy $x diagnostické zobrazování $7 D010911
- 650 12
- $a adenom $x diagnostické zobrazování $7 D000236
- 650 _2
- $a umělá inteligence $7 D001185
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a deep learning $7 D000077321
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a radiomika $7 D000097188
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 655 _2
- $a systematický přehled $7 D000078182
- 700 1_
- $a Benesova, Wanda $u Slovak University of Technology in Bratislava, Bratislava, Slovakia. vanda_benesova@stuba.sk $1 https://orcid.org/0000000169299694
- 773 0_
- $w MED00003217 $t Medical & biological engineering & computing $x 1741-0444 $g Roč. 62, č. 12 (2024), s. 3581-3597
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39012416 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206104239 $b ABA008
- 999 __
- $a ok $b bmc $g 2263215 $s 1239325
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 62 $c 12 $d 3581-3597 $e 20240716 $i 1741-0444 $m Medical & biological engineering & computing $n Med Biol Eng Comput $x MED00003217
- LZP __
- $a Pubmed-20250121