-
Je něco špatně v tomto záznamu ?
Traction-separation law parameters for the description of age-related changes in the delamination strength of the human descending thoracic aorta
Z. Petřivý, L. Horný, P. Tichý
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články
Grantová podpora
20-11186S
Grantová Agentura České Republiky
NLK
ProQuest Central
od 2002-06-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2011-02-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2002-06-01 do Před 1 rokem
- MeSH
- analýza metodou konečných prvků MeSH
- aorta thoracica * fyziologie MeSH
- biomechanika MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mechanický stres MeSH
- modely kardiovaskulární MeSH
- počítačová simulace MeSH
- senioři MeSH
- stárnutí fyziologie MeSH
- trakce MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
Aortic dissection is a life-threatening disease that consists in the development of a tear in the wall of the aorta. The initial tear propagates as a discontinuity leading to separation within the aortic wall, which can result in the creation of a so-called false lumen. A fatal threat occurs if the rupture extends through the whole thickness of the aortic wall, as blood may then leak. It is generally accepted that the dissection, which can sometime extend along the entire length of the aorta, propagates via a delamination mechanism. The aim of the present paper is to provide experimentally validated parameters of a mathematical model for the description of the wall's cohesion. A model of the peeling experiment was built in Abaqus. The delamination interface was described by a piecewise linear traction-separation law. The bulk behavior of the aorta was assumed to be nonlinearly elastic, anisotropic, and incompressible. Our simulations resulted in estimates of the material parameters for the traction-separation law of the human descending thoracic aorta, which were obtained by minimizing the differences between the FEM predictions and the delamination force given by the regression of the peeling experiments. The results show that the stress at damage initiation, Tc, should be understood as an age-dependent quantity, and under the assumptions of our model this dependence can be expressed by linear regression as Tc = - 13.03·10-4·Age + 0.2485 if the crack front advances in the axial direction, and Tc = - 7.58·10-4·Age + 0.1897 if the crack front advances in the direction of the aortic circumference (Tc [MPa], Age [years]). Other model parameters were the stiffness K and the separation at failure, δf-δc (K = 0.5 MPa/mm, δf-δc = 0.1 mm). The material parameters provided by our study can be used in numerical simulations of the biomechanics of dissection propagation through the aorta especially when age-associated phenomena are studied.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25003321
- 003
- CZ-PrNML
- 005
- 20250206104245.0
- 007
- ta
- 008
- 250121s2024 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s10237-024-01871-1 $2 doi
- 035 __
- $a (PubMed)38985231
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Petřivý, Zdeněk $u Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic $1 https://orcid.org/0000000231356056
- 245 10
- $a Traction-separation law parameters for the description of age-related changes in the delamination strength of the human descending thoracic aorta / $c Z. Petřivý, L. Horný, P. Tichý
- 520 9_
- $a Aortic dissection is a life-threatening disease that consists in the development of a tear in the wall of the aorta. The initial tear propagates as a discontinuity leading to separation within the aortic wall, which can result in the creation of a so-called false lumen. A fatal threat occurs if the rupture extends through the whole thickness of the aortic wall, as blood may then leak. It is generally accepted that the dissection, which can sometime extend along the entire length of the aorta, propagates via a delamination mechanism. The aim of the present paper is to provide experimentally validated parameters of a mathematical model for the description of the wall's cohesion. A model of the peeling experiment was built in Abaqus. The delamination interface was described by a piecewise linear traction-separation law. The bulk behavior of the aorta was assumed to be nonlinearly elastic, anisotropic, and incompressible. Our simulations resulted in estimates of the material parameters for the traction-separation law of the human descending thoracic aorta, which were obtained by minimizing the differences between the FEM predictions and the delamination force given by the regression of the peeling experiments. The results show that the stress at damage initiation, Tc, should be understood as an age-dependent quantity, and under the assumptions of our model this dependence can be expressed by linear regression as Tc = - 13.03·10-4·Age + 0.2485 if the crack front advances in the axial direction, and Tc = - 7.58·10-4·Age + 0.1897 if the crack front advances in the direction of the aortic circumference (Tc [MPa], Age [years]). Other model parameters were the stiffness K and the separation at failure, δf-δc (K = 0.5 MPa/mm, δf-δc = 0.1 mm). The material parameters provided by our study can be used in numerical simulations of the biomechanics of dissection propagation through the aorta especially when age-associated phenomena are studied.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a aorta thoracica $x fyziologie $7 D001013
- 650 _2
- $a mechanický stres $7 D013314
- 650 _2
- $a stárnutí $x fyziologie $7 D000375
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a trakce $7 D014143
- 650 _2
- $a modely kardiovaskulární $7 D008955
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a biomechanika $7 D001696
- 650 _2
- $a analýza metodou konečných prvků $7 D020342
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Horný, Lukáš $u Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic. lukas.horny@fs.cvut.cz $1 https://orcid.org/000000032667249X
- 700 1_
- $a Tichý, Petr $u Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic $1 https://orcid.org/0000000320695586 $7 uk20211104067
- 773 0_
- $w MED00172900 $t Biomechanics and modeling in mechanobiology $x 1617-7940 $g Roč. 23, č. 6 (2024), s. 1837-1849
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38985231 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206104240 $b ABA008
- 999 __
- $a ok $b bmc $g 2263217 $s 1239328
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 23 $c 6 $d 1837-1849 $e 20240710 $i 1617-7940 $m Biomechanics and modeling in mechanobiology $n Biomech Model Mechanobiol $x MED00172900
- GRA __
- $a 20-11186S $p Grantová Agentura České Republiky
- LZP __
- $a Pubmed-20250121