Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Traction-separation law parameters for the description of age-related changes in the delamination strength of the human descending thoracic aorta

Z. Petřivý, L. Horný, P. Tichý

. 2024 ; 23 (6) : 1837-1849. [pub] 20240710

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25003321

Grantová podpora
20-11186S Grantová Agentura České Republiky

E-zdroje Online Plný text

NLK ProQuest Central od 2002-06-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2011-02-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2002-06-01 do Před 1 rokem

Aortic dissection is a life-threatening disease that consists in the development of a tear in the wall of the aorta. The initial tear propagates as a discontinuity leading to separation within the aortic wall, which can result in the creation of a so-called false lumen. A fatal threat occurs if the rupture extends through the whole thickness of the aortic wall, as blood may then leak. It is generally accepted that the dissection, which can sometime extend along the entire length of the aorta, propagates via a delamination mechanism. The aim of the present paper is to provide experimentally validated parameters of a mathematical model for the description of the wall's cohesion. A model of the peeling experiment was built in Abaqus. The delamination interface was described by a piecewise linear traction-separation law. The bulk behavior of the aorta was assumed to be nonlinearly elastic, anisotropic, and incompressible. Our simulations resulted in estimates of the material parameters for the traction-separation law of the human descending thoracic aorta, which were obtained by minimizing the differences between the FEM predictions and the delamination force given by the regression of the peeling experiments. The results show that the stress at damage initiation, Tc, should be understood as an age-dependent quantity, and under the assumptions of our model this dependence can be expressed by linear regression as Tc = - 13.03·10-4·Age + 0.2485 if the crack front advances in the axial direction, and Tc = - 7.58·10-4·Age + 0.1897 if the crack front advances in the direction of the aortic circumference (Tc [MPa], Age [years]). Other model parameters were the stiffness K and the separation at failure, δf-δc (K = 0.5 MPa/mm, δf-δc = 0.1 mm). The material parameters provided by our study can be used in numerical simulations of the biomechanics of dissection propagation through the aorta especially when age-associated phenomena are studied.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25003321
003      
CZ-PrNML
005      
20250206104245.0
007      
ta
008      
250121s2024 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s10237-024-01871-1 $2 doi
035    __
$a (PubMed)38985231
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Petřivý, Zdeněk $u Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic $1 https://orcid.org/0000000231356056
245    10
$a Traction-separation law parameters for the description of age-related changes in the delamination strength of the human descending thoracic aorta / $c Z. Petřivý, L. Horný, P. Tichý
520    9_
$a Aortic dissection is a life-threatening disease that consists in the development of a tear in the wall of the aorta. The initial tear propagates as a discontinuity leading to separation within the aortic wall, which can result in the creation of a so-called false lumen. A fatal threat occurs if the rupture extends through the whole thickness of the aortic wall, as blood may then leak. It is generally accepted that the dissection, which can sometime extend along the entire length of the aorta, propagates via a delamination mechanism. The aim of the present paper is to provide experimentally validated parameters of a mathematical model for the description of the wall's cohesion. A model of the peeling experiment was built in Abaqus. The delamination interface was described by a piecewise linear traction-separation law. The bulk behavior of the aorta was assumed to be nonlinearly elastic, anisotropic, and incompressible. Our simulations resulted in estimates of the material parameters for the traction-separation law of the human descending thoracic aorta, which were obtained by minimizing the differences between the FEM predictions and the delamination force given by the regression of the peeling experiments. The results show that the stress at damage initiation, Tc, should be understood as an age-dependent quantity, and under the assumptions of our model this dependence can be expressed by linear regression as Tc = - 13.03·10-4·Age + 0.2485 if the crack front advances in the axial direction, and Tc = - 7.58·10-4·Age + 0.1897 if the crack front advances in the direction of the aortic circumference (Tc [MPa], Age [years]). Other model parameters were the stiffness K and the separation at failure, δf-δc (K = 0.5 MPa/mm, δf-δc = 0.1 mm). The material parameters provided by our study can be used in numerical simulations of the biomechanics of dissection propagation through the aorta especially when age-associated phenomena are studied.
650    _2
$a lidé $7 D006801
650    12
$a aorta thoracica $x fyziologie $7 D001013
650    _2
$a mechanický stres $7 D013314
650    _2
$a stárnutí $x fyziologie $7 D000375
650    _2
$a senioři $7 D000368
650    _2
$a počítačová simulace $7 D003198
650    _2
$a lidé středního věku $7 D008875
650    _2
$a trakce $7 D014143
650    _2
$a modely kardiovaskulární $7 D008955
650    _2
$a dospělí $7 D000328
650    _2
$a biomechanika $7 D001696
650    _2
$a analýza metodou konečných prvků $7 D020342
655    _2
$a časopisecké články $7 D016428
700    1_
$a Horný, Lukáš $u Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic. lukas.horny@fs.cvut.cz $1 https://orcid.org/000000032667249X
700    1_
$a Tichý, Petr $u Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic $1 https://orcid.org/0000000320695586 $7 uk20211104067
773    0_
$w MED00172900 $t Biomechanics and modeling in mechanobiology $x 1617-7940 $g Roč. 23, č. 6 (2024), s. 1837-1849
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38985231 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206104240 $b ABA008
999    __
$a ok $b bmc $g 2263217 $s 1239328
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 23 $c 6 $d 1837-1849 $e 20240710 $i 1617-7940 $m Biomechanics and modeling in mechanobiology $n Biomech Model Mechanobiol $x MED00172900
GRA    __
$a 20-11186S $p Grantová Agentura České Republiky
LZP    __
$a Pubmed-20250121

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...