• Je něco špatně v tomto záznamu ?

Achondroplasia: aligning mouse model with human clinical studies shows crucial importance of immediate postnatal start of the therapy

G. Rico-Llanos, F. Spoutil, E. Blahova, A. Koudelka, M. Prochazkova, A. Czyrek, B. Fafilek, J. Prochazka, M. Gonzalez Lopez, J. Krivanek, R. Sedlacek, D. Krakow, Y. Nonaka, Y. Nakamura, P. Krejci

. 2024 ; 39 (12) : 1783-1792. [pub] 20241129

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25003362

Grantová podpora
RVO 68378050 Czech Academy of Sciences
LX22NPO5102 National Institute for Cancer Research
LUAUS23295 Ministry of Education, Youth and Sports of the Czech Republic
NU23-10-00550 Agency for Healthcare Research of the Czech Republic
GF21-26400 K Czech Science Foundation
MUNI/G/1771/2020 Masaryk University

Achondroplasia is the most common form of human dwarfism caused by mutations in the FGFR3 receptor tyrosine kinase. Current therapy begins at 2 years of age and improves longitudinal growth but does not address the cranial malformations including midface hypoplasia and foramen magnum stenosis, which lead to significant otolaryngeal and neurologic compromise. A recent clinical trial found partial restoration of cranial defects with therapy starting at 3 months of age, but results are still inconclusive. The benefits of achondroplasia therapy are therefore controversial, increasing skepticism among the medical community and patients. We used a mouse model of achondroplasia to test treatment protocols aligned with human studies. Early postnatal treatment (from day 1) was compared with late postnatal treatment (from day 4, equivalent to ~5 months in humans). Animals were treated with the FGFR3 inhibitor infigratinib and the effect on skeleton was thoroughly examined. We show that premature fusion of the skull base synchondroses occurs immediately after birth and leads to defective cranial development and foramen magnum stenosis in the mouse model to achondroplasia. This phenotype appears significantly restored by early infigratinib administration when compared with late treatment, which provides weak to no rescue. In contrast, the long bone growth is similarly improved by both early and late protocols. We provide clear evidence that immediate postnatal therapy is critical for normalization of skeletal growth in both the cranial base and long bones and the prevention of sequelae associated with achondroplasia. We also describe the limitations of early postnatal therapy, providing a paradigm-shifting argument for the development of prenatal therapy for achondroplasia.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25003362
003      
CZ-PrNML
005      
20250206104307.0
007      
ta
008      
250121s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/jbmr/zjae173 $2 doi
035    __
$a (PubMed)39423254
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Rico-Llanos, Gustavo $u Department of Biology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, CZ-65691 Brno, Czech Republic
245    10
$a Achondroplasia: aligning mouse model with human clinical studies shows crucial importance of immediate postnatal start of the therapy / $c G. Rico-Llanos, F. Spoutil, E. Blahova, A. Koudelka, M. Prochazkova, A. Czyrek, B. Fafilek, J. Prochazka, M. Gonzalez Lopez, J. Krivanek, R. Sedlacek, D. Krakow, Y. Nonaka, Y. Nakamura, P. Krejci
520    9_
$a Achondroplasia is the most common form of human dwarfism caused by mutations in the FGFR3 receptor tyrosine kinase. Current therapy begins at 2 years of age and improves longitudinal growth but does not address the cranial malformations including midface hypoplasia and foramen magnum stenosis, which lead to significant otolaryngeal and neurologic compromise. A recent clinical trial found partial restoration of cranial defects with therapy starting at 3 months of age, but results are still inconclusive. The benefits of achondroplasia therapy are therefore controversial, increasing skepticism among the medical community and patients. We used a mouse model of achondroplasia to test treatment protocols aligned with human studies. Early postnatal treatment (from day 1) was compared with late postnatal treatment (from day 4, equivalent to ~5 months in humans). Animals were treated with the FGFR3 inhibitor infigratinib and the effect on skeleton was thoroughly examined. We show that premature fusion of the skull base synchondroses occurs immediately after birth and leads to defective cranial development and foramen magnum stenosis in the mouse model to achondroplasia. This phenotype appears significantly restored by early infigratinib administration when compared with late treatment, which provides weak to no rescue. In contrast, the long bone growth is similarly improved by both early and late protocols. We provide clear evidence that immediate postnatal therapy is critical for normalization of skeletal growth in both the cranial base and long bones and the prevention of sequelae associated with achondroplasia. We also describe the limitations of early postnatal therapy, providing a paradigm-shifting argument for the development of prenatal therapy for achondroplasia.
650    _2
$a zvířata $7 D000818
650    12
$a achondroplazie $x patologie $x farmakoterapie $7 D000130
650    12
$a modely nemocí na zvířatech $7 D004195
650    _2
$a lidé $7 D006801
650    _2
$a myši $7 D051379
650    12
$a receptor fibroblastových růstových faktorů, typ 3 $x genetika $x metabolismus $7 D051498
650    _2
$a lebka $x patologie $x účinky léků $7 D012886
655    _2
$a časopisecké články $7 D016428
700    1_
$a Spoutil, Frantisek $u Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic
700    1_
$a Blahova, Eva $u Department of Biology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, CZ-65691 Brno, Czech Republic
700    1_
$a Koudelka, Adolf $u Department of Biology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
700    1_
$a Prochazkova, Michaela $u Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic
700    1_
$a Czyrek, Aleksandra $u Department of Biology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, CZ-65691 Brno, Czech Republic
700    1_
$a Fafilek, Bohumil $u Department of Biology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, CZ-65691 Brno, Czech Republic $u Institute of Animal Physiology and Genetics of the of the Czech Academy of Sciences, CZ-60200 Brno, Czech Republic
700    1_
$a Prochazka, Jan $u Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic
700    1_
$a Gonzalez Lopez, Marcos $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
700    1_
$a Krivanek, Jan $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
700    1_
$a Sedlacek, Radislav $u Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic
700    1_
$a Krakow, Deborah $u Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California Los Angeles, Los Angeles, CA 90095, United States
700    1_
$a Nonaka, Yosuke $u RIBOMIC Inc., Tokyo 108-0071, Japan
700    1_
$a Nakamura, Yoshikazu $u RIBOMIC Inc., Tokyo 108-0071, Japan $u Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
700    1_
$a Krejci, Pavel $u Department of Biology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, CZ-65691 Brno, Czech Republic $u Institute of Animal Physiology and Genetics of the of the Czech Academy of Sciences, CZ-60200 Brno, Czech Republic $1 https://orcid.org/0000000306189134 $7 xx0007657
773    0_
$w MED00002559 $t Journal of bone and mineral research $x 1523-4681 $g Roč. 39, č. 12 (2024), s. 1783-1792
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39423254 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206104303 $b ABA008
999    __
$a ok $b bmc $g 2263251 $s 1239369
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 39 $c 12 $d 1783-1792 $e 20241129 $i 1523-4681 $m Journal of bone and mineral research $n J Bone Miner Res $x MED00002559
GRA    __
$a RVO 68378050 $p Czech Academy of Sciences
GRA    __
$a LX22NPO5102 $p National Institute for Cancer Research
GRA    __
$a LUAUS23295 $p Ministry of Education, Youth and Sports of the Czech Republic
GRA    __
$a NU23-10-00550 $p Agency for Healthcare Research of the Czech Republic
GRA    __
$a GF21-26400 K $p Czech Science Foundation
GRA    __
$a MUNI/G/1771/2020 $p Masaryk University
LZP    __
$a Pubmed-20250121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...