• Je něco špatně v tomto záznamu ?

Contribution of glucose and glutamine to hypoxia-induced lipid synthesis decreases, while contribution of acetate increases, during 3T3-L1 differentiation

L. Ryskova, K. Pospisilova, J. Vavra, T. Wolf, A. Dvorak, L. Vitek, J. Polak

. 2024 ; 14 (1) : 28193. [pub] 20241115

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25003449

Grantová podpora
NU21-01-00259 Ministry of Health of the Czech Republic project AZV
GAUK 294822 Grant Agency of Charles University
CZ-DRO-VFN64165 Ministry of Health of the Czech Republic project MH

The molecular mechanisms linking obstructive sleep apnea syndrome (OSA) to obesity and the development of metabolic diseases are still poorly understood. The role of hypoxia (a characteristic feature of OSA) in excessive fat accumulation has been proposed. The present study investigated the possible effects of hypoxia (4% oxygen) on de novo lipogenesis by tracking the major carbon sources in differentiating 3T3-L1 adipocytes. Gas-permeable cultuware was employed to cultivate 3T3-L1 adipocytes in hypoxia (4%) for 7 or 14 days of differentiation. We investigated the contribution of glutamine, glucose or acetate using 13C or 14C labelled carbons to the newly synthesized lipid pool, changes in intracellular lipid content after inhibiting citrate- or acetate-dependent pathways and gene expression of involved key enzymes. The results demonstrate that, in differentiating adipocytes, hypoxia decreased the synthesis of lipids from glucose (44.1 ± 8.8 to 27.5 ± 3.0 pmol/mg of protein, p < 0.01) and partially decreased the contribution of glutamine metabolized through the reverse tricarboxylic acid cycle (4.6% ± 0.2-4.2% ± 0.1%, p < 0.01). Conversely, the contribution of acetate, a citrate- and mitochondria-independent source of carbons, increased upon hypoxia (356.5 ± 71.4 to 649.8 ± 117.5 pmol/mg of protein, p < 0.01). Further, inhibiting the citrate- or acetate-dependent pathways decreased the intracellular lipid content by 58% and 73%, respectively (p < 0.01) showing the importance of de novo lipogenesis in hypoxia-exposed adipocytes. Altogether, hypoxia modified the utilization of carbon sources, leading to alterations in de novo lipogenesis in differentiating adipocytes and increased intracellular lipid content.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25003449
003      
CZ-PrNML
005      
20250206104341.0
007      
ta
008      
250121s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-024-79458-0 $2 doi
035    __
$a (PubMed)39548264
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Ryskova, Lucie $u Department of Pathophysiology, Third Faculty of Medicine, Charles University, Ruska 87, Prague, 100 00, Czech Republic
245    10
$a Contribution of glucose and glutamine to hypoxia-induced lipid synthesis decreases, while contribution of acetate increases, during 3T3-L1 differentiation / $c L. Ryskova, K. Pospisilova, J. Vavra, T. Wolf, A. Dvorak, L. Vitek, J. Polak
520    9_
$a The molecular mechanisms linking obstructive sleep apnea syndrome (OSA) to obesity and the development of metabolic diseases are still poorly understood. The role of hypoxia (a characteristic feature of OSA) in excessive fat accumulation has been proposed. The present study investigated the possible effects of hypoxia (4% oxygen) on de novo lipogenesis by tracking the major carbon sources in differentiating 3T3-L1 adipocytes. Gas-permeable cultuware was employed to cultivate 3T3-L1 adipocytes in hypoxia (4%) for 7 or 14 days of differentiation. We investigated the contribution of glutamine, glucose or acetate using 13C or 14C labelled carbons to the newly synthesized lipid pool, changes in intracellular lipid content after inhibiting citrate- or acetate-dependent pathways and gene expression of involved key enzymes. The results demonstrate that, in differentiating adipocytes, hypoxia decreased the synthesis of lipids from glucose (44.1 ± 8.8 to 27.5 ± 3.0 pmol/mg of protein, p < 0.01) and partially decreased the contribution of glutamine metabolized through the reverse tricarboxylic acid cycle (4.6% ± 0.2-4.2% ± 0.1%, p < 0.01). Conversely, the contribution of acetate, a citrate- and mitochondria-independent source of carbons, increased upon hypoxia (356.5 ± 71.4 to 649.8 ± 117.5 pmol/mg of protein, p < 0.01). Further, inhibiting the citrate- or acetate-dependent pathways decreased the intracellular lipid content by 58% and 73%, respectively (p < 0.01) showing the importance of de novo lipogenesis in hypoxia-exposed adipocytes. Altogether, hypoxia modified the utilization of carbon sources, leading to alterations in de novo lipogenesis in differentiating adipocytes and increased intracellular lipid content.
650    _2
$a zvířata $7 D000818
650    _2
$a myši $7 D051379
650    12
$a glukosa $x metabolismus $7 D005947
650    12
$a glutamin $x metabolismus $7 D005973
650    12
$a buňky 3T3-L1 $7 D041721
650    12
$a buněčná diferenciace $x účinky léků $7 D002454
650    12
$a tukové buňky $x metabolismus $x účinky léků $7 D017667
650    12
$a lipogeneze $x účinky léků $7 D050155
650    12
$a acetáty $x metabolismus $x farmakologie $7 D000085
650    _2
$a hypoxie buňky $7 D015687
650    _2
$a citrátový cyklus $7 D002952
650    _2
$a metabolismus lipidů $x účinky léků $7 D050356
650    _2
$a lipidy $x biosyntéza $7 D008055
655    _2
$a časopisecké články $7 D016428
700    1_
$a Pospisilova, Katerina $u Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Vavra, Jiri $u Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
700    1_
$a Wolf, Tomas $u Department of Pathophysiology, Third Faculty of Medicine, Charles University, Ruska 87, Prague, 100 00, Czech Republic
700    1_
$a Dvorak, Ales $u Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Vitek, Libor $u Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic $u Department of Internal Medicine, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Polak, Jan $u Department of Pathophysiology, Third Faculty of Medicine, Charles University, Ruska 87, Prague, 100 00, Czech Republic. jan.polak@lf3.cuni.cz $u Department of Internal Medicine, Thomayer University Hospital, Videnska 800, Prague, 140 59, Czech Republic. jan.polak@lf3.cuni.cz
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 14, č. 1 (2024), s. 28193
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39548264 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206104337 $b ABA008
999    __
$a ok $b bmc $g 2263304 $s 1239456
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 14 $c 1 $d 28193 $e 20241115 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
GRA    __
$a NU21-01-00259 $p Ministry of Health of the Czech Republic project AZV
GRA    __
$a GAUK 294822 $p Grant Agency of Charles University
GRA    __
$a CZ-DRO-VFN64165 $p Ministry of Health of the Czech Republic project MH
LZP    __
$a Pubmed-20250121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...