-
Je něco špatně v tomto záznamu ?
Characterizing devices for validation of dose, dose rate, and LET in ultra high dose rate proton irradiations
N. Harrison, S. Charyyev, C. Oancea, A. Stanforth, E. Gelover, S. Zhou, WS. Dynan, T. Zhang, S. Biegalski, L. Lin
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, validační studie
PubMed
39153223
DOI
10.1002/mp.17359
Knihovny.cz E-zdroje
- MeSH
- celková dávka radioterapie * MeSH
- dávka záření MeSH
- lineární přenos energie * MeSH
- metoda Monte Carlo MeSH
- plánování radioterapie pomocí počítače metody MeSH
- protonová terapie * přístrojové vybavení metody MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
BACKGROUND: Ultra high dose rate (UHDR) radiotherapy using ridge filter is a new treatment modality known as conformal FLASH that, when optimized for dose, dose rate (DR), and linear energy transfer (LET), has the potential to reduce damage to healthy tissue without sacrificing tumor killing efficacy via the FLASH effect. PURPOSE: Clinical implementation of conformal FLASH proton therapy has been limited by quality assurance (QA) challenges, which include direct measurement of UHDR and LET. Voxel DR distributions and LET spectra at planning target margins are paramount to the DR/LET-related sparing of organs at risk. We hereby present a methodology to achieve experimental validation of these parameters. METHODS: Dose, DR, and LET were measured for a conformal FLASH treatment plan involving a 250-MeV proton beam and a 3D-printed ridge filter designed to uniformly irradiate a spherical target. We measured dose and DR simultaneously using a 4D multi-layer strip ionization chamber (MLSIC) under UHDR conditions. Additionally, we developed an "under-sample and recover (USRe)" technique for a high-resolution pixelated semiconductor detector, Timepix3, to avoid event pile-up and to correct measured LET at high-proton-flux locations without undesirable beam modifications. Confirmation of these measurements was done using a MatriXX PT detector and by Monte Carlo (MC) simulations. RESULTS: MC conformal FLASH computed doses had gamma passing rates of >95% (3 mm/3% criteria) when compared to MatriXX PT and MLSIC data. At the lateral margin, DR showed average agreement values within 0.3% of simulation at 100 Gy/s and fluctuations ∼10% at 15 Gy/s. LET spectra in the proximal, lateral, and distal margins had Bhattacharyya distances of <1.3%. CONCLUSION: Our measurements with the MLSIC and Timepix3 detectors shown that the DR distributions for UHDR scenarios and LET spectra using USRe are in agreement with simulations. These results demonstrate that the methodology presented here can be used effectively for the experimental validation and QA of FLASH treatment plans.
ADVACAM s r o Prague Czech Republic
Emory University Atlanta Georgia USA
Georgia Institute of Technology Atlanta Georgia USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25003700
- 003
- CZ-PrNML
- 005
- 20250206104626.0
- 007
- ta
- 008
- 250121s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/mp.17359 $2 doi
- 035 __
- $a (PubMed)39153223
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Harrison, Nathan $u Emory University, Atlanta, Georgia, USA
- 245 10
- $a Characterizing devices for validation of dose, dose rate, and LET in ultra high dose rate proton irradiations / $c N. Harrison, S. Charyyev, C. Oancea, A. Stanforth, E. Gelover, S. Zhou, WS. Dynan, T. Zhang, S. Biegalski, L. Lin
- 520 9_
- $a BACKGROUND: Ultra high dose rate (UHDR) radiotherapy using ridge filter is a new treatment modality known as conformal FLASH that, when optimized for dose, dose rate (DR), and linear energy transfer (LET), has the potential to reduce damage to healthy tissue without sacrificing tumor killing efficacy via the FLASH effect. PURPOSE: Clinical implementation of conformal FLASH proton therapy has been limited by quality assurance (QA) challenges, which include direct measurement of UHDR and LET. Voxel DR distributions and LET spectra at planning target margins are paramount to the DR/LET-related sparing of organs at risk. We hereby present a methodology to achieve experimental validation of these parameters. METHODS: Dose, DR, and LET were measured for a conformal FLASH treatment plan involving a 250-MeV proton beam and a 3D-printed ridge filter designed to uniformly irradiate a spherical target. We measured dose and DR simultaneously using a 4D multi-layer strip ionization chamber (MLSIC) under UHDR conditions. Additionally, we developed an "under-sample and recover (USRe)" technique for a high-resolution pixelated semiconductor detector, Timepix3, to avoid event pile-up and to correct measured LET at high-proton-flux locations without undesirable beam modifications. Confirmation of these measurements was done using a MatriXX PT detector and by Monte Carlo (MC) simulations. RESULTS: MC conformal FLASH computed doses had gamma passing rates of >95% (3 mm/3% criteria) when compared to MatriXX PT and MLSIC data. At the lateral margin, DR showed average agreement values within 0.3% of simulation at 100 Gy/s and fluctuations ∼10% at 15 Gy/s. LET spectra in the proximal, lateral, and distal margins had Bhattacharyya distances of <1.3%. CONCLUSION: Our measurements with the MLSIC and Timepix3 detectors shown that the DR distributions for UHDR scenarios and LET spectra using USRe are in agreement with simulations. These results demonstrate that the methodology presented here can be used effectively for the experimental validation and QA of FLASH treatment plans.
- 650 12
- $a protonová terapie $x přístrojové vybavení $x metody $7 D061766
- 650 12
- $a lineární přenos energie $7 D018499
- 650 12
- $a celková dávka radioterapie $7 D011879
- 650 _2
- $a dávka záření $7 D011829
- 650 _2
- $a plánování radioterapie pomocí počítače $x metody $7 D011880
- 650 _2
- $a metoda Monte Carlo $7 D009010
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a validační studie $7 D023361
- 700 1_
- $a Charyyev, Serdar $u Stanford University, Stanford, California, USA
- 700 1_
- $a Oancea, Cristina $u ADVACAM s.r.o., Prague, Czech Republic
- 700 1_
- $a Stanforth, Alexander $u Georgia Institute of Technology, Atlanta, Georgia, USA
- 700 1_
- $a Gelover, Edgar $u Emory University, Atlanta, Georgia, USA
- 700 1_
- $a Zhou, Shuang $u Washington University of St. Louis, Saint Louis, Missouri, USA
- 700 1_
- $a Dynan, William S $u Emory University, Atlanta, Georgia, USA
- 700 1_
- $a Zhang, Tiezhi $u Washington University of St. Louis, Saint Louis, Missouri, USA
- 700 1_
- $a Biegalski, Steven $u Georgia Institute of Technology, Atlanta, Georgia, USA
- 700 1_
- $a Lin, Liyong $u Emory University, Atlanta, Georgia, USA
- 773 0_
- $w MED00003245 $t Medical physics $x 2473-4209 $g Roč. 51, č. 11 (2024), s. 8411-8422
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39153223 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206104622 $b ABA008
- 999 __
- $a ok $b bmc $g 2263455 $s 1239707
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 51 $c 11 $d 8411-8422 $e 20240817 $i 2473-4209 $m Medical physics $n Med Phys $x MED00003245
- LZP __
- $a Pubmed-20250121