Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Characterizing devices for validation of dose, dose rate, and LET in ultra high dose rate proton irradiations

N. Harrison, S. Charyyev, C. Oancea, A. Stanforth, E. Gelover, S. Zhou, WS. Dynan, T. Zhang, S. Biegalski, L. Lin

. 2024 ; 51 (11) : 8411-8422. [pub] 20240817

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/bmc25003700

BACKGROUND: Ultra high dose rate (UHDR) radiotherapy using ridge filter is a new treatment modality known as conformal FLASH that, when optimized for dose, dose rate (DR), and linear energy transfer (LET), has the potential to reduce damage to healthy tissue without sacrificing tumor killing efficacy via the FLASH effect. PURPOSE: Clinical implementation of conformal FLASH proton therapy has been limited by quality assurance (QA) challenges, which include direct measurement of UHDR and LET. Voxel DR distributions and LET spectra at planning target margins are paramount to the DR/LET-related sparing of organs at risk. We hereby present a methodology to achieve experimental validation of these parameters. METHODS: Dose, DR, and LET were measured for a conformal FLASH treatment plan involving a 250-MeV proton beam and a 3D-printed ridge filter designed to uniformly irradiate a spherical target. We measured dose and DR simultaneously using a 4D multi-layer strip ionization chamber (MLSIC) under UHDR conditions. Additionally, we developed an "under-sample and recover (USRe)" technique for a high-resolution pixelated semiconductor detector, Timepix3, to avoid event pile-up and to correct measured LET at high-proton-flux locations without undesirable beam modifications. Confirmation of these measurements was done using a MatriXX PT detector and by Monte Carlo (MC) simulations. RESULTS: MC conformal FLASH computed doses had gamma passing rates of >95% (3 mm/3% criteria) when compared to MatriXX PT and MLSIC data. At the lateral margin, DR showed average agreement values within 0.3% of simulation at 100 Gy/s and fluctuations ∼10% at 15 Gy/s. LET spectra in the proximal, lateral, and distal margins had Bhattacharyya distances of <1.3%. CONCLUSION: Our measurements with the MLSIC and Timepix3 detectors shown that the DR distributions for UHDR scenarios and LET spectra using USRe are in agreement with simulations. These results demonstrate that the methodology presented here can be used effectively for the experimental validation and QA of FLASH treatment plans.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25003700
003      
CZ-PrNML
005      
20250206104626.0
007      
ta
008      
250121s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/mp.17359 $2 doi
035    __
$a (PubMed)39153223
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Harrison, Nathan $u Emory University, Atlanta, Georgia, USA
245    10
$a Characterizing devices for validation of dose, dose rate, and LET in ultra high dose rate proton irradiations / $c N. Harrison, S. Charyyev, C. Oancea, A. Stanforth, E. Gelover, S. Zhou, WS. Dynan, T. Zhang, S. Biegalski, L. Lin
520    9_
$a BACKGROUND: Ultra high dose rate (UHDR) radiotherapy using ridge filter is a new treatment modality known as conformal FLASH that, when optimized for dose, dose rate (DR), and linear energy transfer (LET), has the potential to reduce damage to healthy tissue without sacrificing tumor killing efficacy via the FLASH effect. PURPOSE: Clinical implementation of conformal FLASH proton therapy has been limited by quality assurance (QA) challenges, which include direct measurement of UHDR and LET. Voxel DR distributions and LET spectra at planning target margins are paramount to the DR/LET-related sparing of organs at risk. We hereby present a methodology to achieve experimental validation of these parameters. METHODS: Dose, DR, and LET were measured for a conformal FLASH treatment plan involving a 250-MeV proton beam and a 3D-printed ridge filter designed to uniformly irradiate a spherical target. We measured dose and DR simultaneously using a 4D multi-layer strip ionization chamber (MLSIC) under UHDR conditions. Additionally, we developed an "under-sample and recover (USRe)" technique for a high-resolution pixelated semiconductor detector, Timepix3, to avoid event pile-up and to correct measured LET at high-proton-flux locations without undesirable beam modifications. Confirmation of these measurements was done using a MatriXX PT detector and by Monte Carlo (MC) simulations. RESULTS: MC conformal FLASH computed doses had gamma passing rates of >95% (3 mm/3% criteria) when compared to MatriXX PT and MLSIC data. At the lateral margin, DR showed average agreement values within 0.3% of simulation at 100 Gy/s and fluctuations ∼10% at 15 Gy/s. LET spectra in the proximal, lateral, and distal margins had Bhattacharyya distances of <1.3%. CONCLUSION: Our measurements with the MLSIC and Timepix3 detectors shown that the DR distributions for UHDR scenarios and LET spectra using USRe are in agreement with simulations. These results demonstrate that the methodology presented here can be used effectively for the experimental validation and QA of FLASH treatment plans.
650    12
$a protonová terapie $x přístrojové vybavení $x metody $7 D061766
650    12
$a lineární přenos energie $7 D018499
650    12
$a celková dávka radioterapie $7 D011879
650    _2
$a dávka záření $7 D011829
650    _2
$a plánování radioterapie pomocí počítače $x metody $7 D011880
650    _2
$a metoda Monte Carlo $7 D009010
655    _2
$a časopisecké články $7 D016428
655    _2
$a validační studie $7 D023361
700    1_
$a Charyyev, Serdar $u Stanford University, Stanford, California, USA
700    1_
$a Oancea, Cristina $u ADVACAM s.r.o., Prague, Czech Republic
700    1_
$a Stanforth, Alexander $u Georgia Institute of Technology, Atlanta, Georgia, USA
700    1_
$a Gelover, Edgar $u Emory University, Atlanta, Georgia, USA
700    1_
$a Zhou, Shuang $u Washington University of St. Louis, Saint Louis, Missouri, USA
700    1_
$a Dynan, William S $u Emory University, Atlanta, Georgia, USA
700    1_
$a Zhang, Tiezhi $u Washington University of St. Louis, Saint Louis, Missouri, USA
700    1_
$a Biegalski, Steven $u Georgia Institute of Technology, Atlanta, Georgia, USA
700    1_
$a Lin, Liyong $u Emory University, Atlanta, Georgia, USA
773    0_
$w MED00003245 $t Medical physics $x 2473-4209 $g Roč. 51, č. 11 (2024), s. 8411-8422
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39153223 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206104622 $b ABA008
999    __
$a ok $b bmc $g 2263455 $s 1239707
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 51 $c 11 $d 8411-8422 $e 20240817 $i 2473-4209 $m Medical physics $n Med Phys $x MED00003245
LZP    __
$a Pubmed-20250121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...