-
Je něco špatně v tomto záznamu ?
A comprehensive survey of evolutionary algorithms and metaheuristics in brain EEG-based applications
M. Arif, F. Ur Rehman, L. Sekanina, AS. Malik
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, přehledy
PubMed
39321840
DOI
10.1088/1741-2552/ad7f8e
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- artefakty MeSH
- elektroencefalografie * metody MeSH
- lidé MeSH
- mozek * fyziologie MeSH
- rozhraní mozek-počítač MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Electroencephalography (EEG) has emerged as a primary non-invasive and mobile modality for understanding the complex workings of the human brain, providing invaluable insights into cognitive processes, neurological disorders, and brain-computer interfaces. Nevertheless, the volume of EEG data, the presence of artifacts, the selection of optimal channels, and the need for feature extraction from EEG data present considerable challenges in achieving meaningful and distinguishing outcomes for machine learning algorithms utilized to process EEG data. Consequently, the demand for sophisticated optimization techniques has become imperative to overcome these hurdles effectively. Evolutionary algorithms (EAs) and other nature-inspired metaheuristics have been applied as powerful design and optimization tools in recent years, showcasing their significance in addressing various design and optimization problems relevant to brain EEG-based applications. This paper presents a comprehensive survey highlighting the importance of EAs and other metaheuristics in EEG-based applications. The survey is organized according to the main areas where EAs have been applied, namely artifact mitigation, channel selection, feature extraction, feature selection, and signal classification. Finally, the current challenges and future aspects of EAs in the context of EEG-based applications are discussed.
Electrical Engineering Department Karachi Institute of Economics and Technology Karachi Pakistan
Faculty of Information Technology Brno University of Technology Brno Czech Republic
Institute of Networked and Embedded Systems University of Klagenfurt 9020 Klagenfurt Austria
Ubiquitous Sensing Systems Lab University of Klagenfurt Silicon Austria Labs 9020 Klagenfurt Austria
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25003897
- 003
- CZ-PrNML
- 005
- 20250206104753.0
- 007
- ta
- 008
- 250121s2024 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1088/1741-2552/ad7f8e $2 doi
- 035 __
- $a (PubMed)39321840
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Arif, Muhammad $u Institute of Networked and Embedded Systems,University of Klagenfurt, 9020 Klagenfurt, Austria $u Ubiquitous Sensing Systems Lab, University of Klagenfurt-Silicon Austria Labs, 9020 Klagenfurt, Austria
- 245 12
- $a A comprehensive survey of evolutionary algorithms and metaheuristics in brain EEG-based applications / $c M. Arif, F. Ur Rehman, L. Sekanina, AS. Malik
- 520 9_
- $a Electroencephalography (EEG) has emerged as a primary non-invasive and mobile modality for understanding the complex workings of the human brain, providing invaluable insights into cognitive processes, neurological disorders, and brain-computer interfaces. Nevertheless, the volume of EEG data, the presence of artifacts, the selection of optimal channels, and the need for feature extraction from EEG data present considerable challenges in achieving meaningful and distinguishing outcomes for machine learning algorithms utilized to process EEG data. Consequently, the demand for sophisticated optimization techniques has become imperative to overcome these hurdles effectively. Evolutionary algorithms (EAs) and other nature-inspired metaheuristics have been applied as powerful design and optimization tools in recent years, showcasing their significance in addressing various design and optimization problems relevant to brain EEG-based applications. This paper presents a comprehensive survey highlighting the importance of EAs and other metaheuristics in EEG-based applications. The survey is organized according to the main areas where EAs have been applied, namely artifact mitigation, channel selection, feature extraction, feature selection, and signal classification. Finally, the current challenges and future aspects of EAs in the context of EEG-based applications are discussed.
- 650 12
- $a elektroencefalografie $x metody $7 D004569
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a algoritmy $7 D000465
- 650 12
- $a mozek $x fyziologie $7 D001921
- 650 _2
- $a artefakty $7 D016477
- 650 _2
- $a rozhraní mozek-počítač $7 D062207
- 650 _2
- $a strojové učení $7 D000069550
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Ur Rehman, Faizan $u Electrical Engineering Department, Karachi Institute of Economics and Technology, Karachi, Pakistan
- 700 1_
- $a Sekanina, Lukas $u Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
- 700 1_
- $a Malik, Aamir Saeed $u Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic $1 https://orcid.org/0000000310853157 $7 jo20231191665
- 773 0_
- $w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 21, č. 5 (2024)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39321840 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206104748 $b ABA008
- 999 __
- $a ok $b bmc $g 2263568 $s 1239904
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 21 $c 5 $e 20241011 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
- LZP __
- $a Pubmed-20250121