• Je něco špatně v tomto záznamu ?

A comprehensive survey of evolutionary algorithms and metaheuristics in brain EEG-based applications

M. Arif, F. Ur Rehman, L. Sekanina, AS. Malik

. 2024 ; 21 (5) : . [pub] 20241011

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc25003897

Electroencephalography (EEG) has emerged as a primary non-invasive and mobile modality for understanding the complex workings of the human brain, providing invaluable insights into cognitive processes, neurological disorders, and brain-computer interfaces. Nevertheless, the volume of EEG data, the presence of artifacts, the selection of optimal channels, and the need for feature extraction from EEG data present considerable challenges in achieving meaningful and distinguishing outcomes for machine learning algorithms utilized to process EEG data. Consequently, the demand for sophisticated optimization techniques has become imperative to overcome these hurdles effectively. Evolutionary algorithms (EAs) and other nature-inspired metaheuristics have been applied as powerful design and optimization tools in recent years, showcasing their significance in addressing various design and optimization problems relevant to brain EEG-based applications. This paper presents a comprehensive survey highlighting the importance of EAs and other metaheuristics in EEG-based applications. The survey is organized according to the main areas where EAs have been applied, namely artifact mitigation, channel selection, feature extraction, feature selection, and signal classification. Finally, the current challenges and future aspects of EAs in the context of EEG-based applications are discussed.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25003897
003      
CZ-PrNML
005      
20250206104753.0
007      
ta
008      
250121s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1741-2552/ad7f8e $2 doi
035    __
$a (PubMed)39321840
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Arif, Muhammad $u Institute of Networked and Embedded Systems,University of Klagenfurt, 9020 Klagenfurt, Austria $u Ubiquitous Sensing Systems Lab, University of Klagenfurt-Silicon Austria Labs, 9020 Klagenfurt, Austria
245    12
$a A comprehensive survey of evolutionary algorithms and metaheuristics in brain EEG-based applications / $c M. Arif, F. Ur Rehman, L. Sekanina, AS. Malik
520    9_
$a Electroencephalography (EEG) has emerged as a primary non-invasive and mobile modality for understanding the complex workings of the human brain, providing invaluable insights into cognitive processes, neurological disorders, and brain-computer interfaces. Nevertheless, the volume of EEG data, the presence of artifacts, the selection of optimal channels, and the need for feature extraction from EEG data present considerable challenges in achieving meaningful and distinguishing outcomes for machine learning algorithms utilized to process EEG data. Consequently, the demand for sophisticated optimization techniques has become imperative to overcome these hurdles effectively. Evolutionary algorithms (EAs) and other nature-inspired metaheuristics have been applied as powerful design and optimization tools in recent years, showcasing their significance in addressing various design and optimization problems relevant to brain EEG-based applications. This paper presents a comprehensive survey highlighting the importance of EAs and other metaheuristics in EEG-based applications. The survey is organized according to the main areas where EAs have been applied, namely artifact mitigation, channel selection, feature extraction, feature selection, and signal classification. Finally, the current challenges and future aspects of EAs in the context of EEG-based applications are discussed.
650    12
$a elektroencefalografie $x metody $7 D004569
650    _2
$a lidé $7 D006801
650    12
$a algoritmy $7 D000465
650    12
$a mozek $x fyziologie $7 D001921
650    _2
$a artefakty $7 D016477
650    _2
$a rozhraní mozek-počítač $7 D062207
650    _2
$a strojové učení $7 D000069550
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Ur Rehman, Faizan $u Electrical Engineering Department, Karachi Institute of Economics and Technology, Karachi, Pakistan
700    1_
$a Sekanina, Lukas $u Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
700    1_
$a Malik, Aamir Saeed $u Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic $1 https://orcid.org/0000000310853157 $7 jo20231191665
773    0_
$w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 21, č. 5 (2024)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39321840 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206104748 $b ABA008
999    __
$a ok $b bmc $g 2263568 $s 1239904
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 21 $c 5 $e 20241011 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
LZP    __
$a Pubmed-20250121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...