Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Utilization of an optimized AlphaFold protein model for structure-based design of a selective HDAC11 inhibitor with anti-neuroblastoma activity

F. Baselious, S. Hilscher, S. Hagemann, S. Tripathee, D. Robaa, C. Barinka, S. Hüttelmaier, M. Schutkowski, W. Sippl

. 2024 ; 357 (10) : e2400486. [pub] 20240712

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25004055

Grantová podpora
469954457 Deutsche Forschungsgemeinschaft (DFG)
471614207 Deutsche Forschungsgemeinschaft (DFG)
86652036 CAS CEP - Centrální evidence projektů
24-12155 S Grant Agency of the Czech Republic

AlphaFold is an artificial intelligence approach for predicting the three-dimensional (3D) structures of proteins with atomic accuracy. One challenge that limits the use of AlphaFold models for drug discovery is the correct prediction of folding in the absence of ligands and cofactors, which compromises their direct use. We have previously described the optimization and use of the histone deacetylase 11 (HDAC11) AlphaFold model for the docking of selective inhibitors such as FT895 and SIS17. Based on the predicted binding mode of FT895 in the optimized HDAC11 AlphaFold model, a new scaffold for HDAC11 inhibitors was designed, and the resulting compounds were tested in vitro against various HDAC isoforms. Compound 5a proved to be the most active compound with an IC50 of 365 nM and was able to selectively inhibit HDAC11. Furthermore, docking of 5a showed a binding mode comparable to FT895 but could not adopt any reasonable poses in other HDAC isoforms. We further supported the docking results with molecular dynamics simulations that confirmed the predicted binding mode. 5a also showed promising activity with an EC50 of 3.6 μM on neuroblastoma cells.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25004055
003      
CZ-PrNML
005      
20250206105106.0
007      
ta
008      
250121s2024 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1002/ardp.202400486 $2 doi
035    __
$a (PubMed)38996352
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Baselious, Fady $u Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany $1 https://orcid.org/0000000332428514
245    10
$a Utilization of an optimized AlphaFold protein model for structure-based design of a selective HDAC11 inhibitor with anti-neuroblastoma activity / $c F. Baselious, S. Hilscher, S. Hagemann, S. Tripathee, D. Robaa, C. Barinka, S. Hüttelmaier, M. Schutkowski, W. Sippl
520    9_
$a AlphaFold is an artificial intelligence approach for predicting the three-dimensional (3D) structures of proteins with atomic accuracy. One challenge that limits the use of AlphaFold models for drug discovery is the correct prediction of folding in the absence of ligands and cofactors, which compromises their direct use. We have previously described the optimization and use of the histone deacetylase 11 (HDAC11) AlphaFold model for the docking of selective inhibitors such as FT895 and SIS17. Based on the predicted binding mode of FT895 in the optimized HDAC11 AlphaFold model, a new scaffold for HDAC11 inhibitors was designed, and the resulting compounds were tested in vitro against various HDAC isoforms. Compound 5a proved to be the most active compound with an IC50 of 365 nM and was able to selectively inhibit HDAC11. Furthermore, docking of 5a showed a binding mode comparable to FT895 but could not adopt any reasonable poses in other HDAC isoforms. We further supported the docking results with molecular dynamics simulations that confirmed the predicted binding mode. 5a also showed promising activity with an EC50 of 3.6 μM on neuroblastoma cells.
650    _2
$a lidé $7 D006801
650    12
$a protinádorové látky $x farmakologie $x chemie $x chemická syntéza $7 D000970
650    _2
$a umělá inteligence $7 D001185
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a vztah mezi dávkou a účinkem léčiva $7 D004305
650    12
$a racionální návrh léčiv $7 D015195
650    12
$a inhibitory histondeacetylas $x farmakologie $x chemie $x chemická syntéza $7 D056572
650    12
$a histondeacetylasy $x metabolismus $7 D006655
650    _2
$a simulace molekulového dockingu $7 D062105
650    _2
$a simulace molekulární dynamiky $7 D056004
650    _2
$a molekulární struktura $7 D015394
650    12
$a neuroblastom $x farmakoterapie $x patologie $7 D009447
650    _2
$a vztahy mezi strukturou a aktivitou $7 D013329
655    _2
$a časopisecké články $7 D016428
700    1_
$a Hilscher, Sebastian $u Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany $1 https://orcid.org/0009000306117365
700    1_
$a Hagemann, Sven $u Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
700    1_
$a Tripathee, Sunita $u Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
700    1_
$a Robaa, Dina $u Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
700    1_
$a Barinka, Cyril $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic $1 https://orcid.org/0000000327513060 $7 xx0126049
700    1_
$a Hüttelmaier, Stefan $u Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
700    1_
$a Schutkowski, Mike $u Charles Tanford Protein Center, Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
700    1_
$a Sippl, Wolfgang $u Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany $1 https://orcid.org/0000000259859261 $7 ntk20201064927
773    0_
$w MED00000507 $t Archiv der Pharmazie $x 1521-4184 $g Roč. 357, č. 10 (2024), s. e2400486
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38996352 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206105101 $b ABA008
999    __
$a ok $b bmc $g 2263666 $s 1240062
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 357 $c 10 $d e2400486 $e 20240712 $i 1521-4184 $m Archiv der Pharmazie $n Arch Pharm (Weinheim) $x MED00000507
GRA    __
$a 469954457 $p Deutsche Forschungsgemeinschaft (DFG)
GRA    __
$a 471614207 $p Deutsche Forschungsgemeinschaft (DFG)
GRA    __
$a 86652036 $p CAS
GRA    __
$a 24-12155 S $p Grant Agency of the Czech Republic
LZP    __
$a Pubmed-20250121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...