Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Detection of early relapse in multiple myeloma patients

T. Růžičková, M. Vlachová, L. Pečinka, M. Brychtová, M. Večeřa, L. Radová, S. Ševčíková, M. Jarošová, J. Havel, L. Pour, S. Ševčíková

. 2025 ; 20 (1) : 4. [pub] 20250129

Status neindexováno Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25008542

Grantová podpora
MUNI/A/1587/2023 Masarykova Univerzita
FNBr, 65269705 University Hospital Brno
AZV NU21-03-00076 Ministerstvo Zdravotnictví Ceské Republiky
Programme EXCELES, ID Project No. LX22NPO5102 European Union

BACKGROUND: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times. It is currently not possible to predict when relapse will occur; numerous studies investigating the dysregulation of non-coding RNA molecules in cancer suggest that microRNAs could be good markers of relapse. RESULTS: Using small RNA sequencing, we profiled microRNA expression in peripheral blood in three groups of MM patients who relapsed at different intervals. In total, 24 microRNAs were significantly dysregulated among analyzed subgroups. Independent validation by RT-qPCR confirmed changed levels of miR-598-3p in MM patients with different times to relapse. At the same time, differences in the mass spectra between groups were identified using matrix-assisted laser desorption/ionization time of flight mass spectrometry. All results were analyzed by machine learning. CONCLUSION: Mass spectrometry coupled with machine learning shows potential as a reliable, rapid, and cost-effective preliminary screening technique to supplement current diagnostics.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25008542
003      
CZ-PrNML
005      
20250422095636.0
007      
ta
008      
250408s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s13008-025-00143-3 $2 doi
035    __
$a (PubMed)39881385
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Růžičková, Tereza $u Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic $u Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
245    10
$a Detection of early relapse in multiple myeloma patients / $c T. Růžičková, M. Vlachová, L. Pečinka, M. Brychtová, M. Večeřa, L. Radová, S. Ševčíková, M. Jarošová, J. Havel, L. Pour, S. Ševčíková
520    9_
$a BACKGROUND: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times. It is currently not possible to predict when relapse will occur; numerous studies investigating the dysregulation of non-coding RNA molecules in cancer suggest that microRNAs could be good markers of relapse. RESULTS: Using small RNA sequencing, we profiled microRNA expression in peripheral blood in three groups of MM patients who relapsed at different intervals. In total, 24 microRNAs were significantly dysregulated among analyzed subgroups. Independent validation by RT-qPCR confirmed changed levels of miR-598-3p in MM patients with different times to relapse. At the same time, differences in the mass spectra between groups were identified using matrix-assisted laser desorption/ionization time of flight mass spectrometry. All results were analyzed by machine learning. CONCLUSION: Mass spectrometry coupled with machine learning shows potential as a reliable, rapid, and cost-effective preliminary screening technique to supplement current diagnostics.
590    __
$a NEINDEXOVÁNO
655    _2
$a časopisecké články $7 D016428
700    1_
$a Vlachová, Monika $u Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
700    1_
$a Pečinka, Lukáš $u Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
700    1_
$a Brychtová, Monika $u Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
700    1_
$a Večeřa, Marek $u Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
700    1_
$a Radová, Lenka $u Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
700    1_
$a Ševčíková, Simona $u Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
700    1_
$a Jarošová, Marie $u Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
700    1_
$a Havel, Josef $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
700    1_
$a Pour, Luděk $u Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
700    1_
$a Ševčíková, Sabina $u Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. sevcik@med.muni.cz $u Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic. sevcik@med.muni.cz $1 https://orcid.org/0000000271946771
773    0_
$w MED00173234 $t Cell division $x 1747-1028 $g Roč. 20, č. 1 (2025), s. 4
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39881385 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250408 $b ABA008
991    __
$a 20250422095638 $b ABA008
999    __
$a ok $b bmc $g 2306411 $s 1245617
BAS    __
$a 3
BAS    __
$a PreBMC-PubMed-not-MEDLINE
BMC    __
$a 2025 $b 20 $c 1 $d 4 $e 20250129 $i 1747-1028 $m Cell division $n Cell Div $x MED00173234
GRA    __
$a MUNI/A/1587/2023 $p Masarykova Univerzita
GRA    __
$a FNBr, 65269705 $p University Hospital Brno
GRA    __
$a AZV NU21-03-00076 $p Ministerstvo Zdravotnictví Ceské Republiky
GRA    __
$a Programme EXCELES, ID Project No. LX22NPO5102 $p European Union
LZP    __
$a Pubmed-20250408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...