-
Je něco špatně v tomto záznamu ?
Detection of early relapse in multiple myeloma patients
T. Růžičková, M. Vlachová, L. Pečinka, M. Brychtová, M. Večeřa, L. Radová, S. Ševčíková, M. Jarošová, J. Havel, L. Pour, S. Ševčíková
Status neindexováno Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1587/2023
Masarykova Univerzita
FNBr, 65269705
University Hospital Brno
AZV NU21-03-00076
Ministerstvo Zdravotnictví Ceské Republiky
Programme EXCELES, ID Project No. LX22NPO5102
European Union
NLK
BioMedCentral
od 2006-12-01
BioMedCentral Open Access
od 2006
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
Springer Nature OA/Free Journals
od 2006-12-01
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times. It is currently not possible to predict when relapse will occur; numerous studies investigating the dysregulation of non-coding RNA molecules in cancer suggest that microRNAs could be good markers of relapse. RESULTS: Using small RNA sequencing, we profiled microRNA expression in peripheral blood in three groups of MM patients who relapsed at different intervals. In total, 24 microRNAs were significantly dysregulated among analyzed subgroups. Independent validation by RT-qPCR confirmed changed levels of miR-598-3p in MM patients with different times to relapse. At the same time, differences in the mass spectra between groups were identified using matrix-assisted laser desorption/ionization time of flight mass spectrometry. All results were analyzed by machine learning. CONCLUSION: Mass spectrometry coupled with machine learning shows potential as a reliable, rapid, and cost-effective preliminary screening technique to supplement current diagnostics.
Department of Chemistry Faculty of Science Masaryk University Brno Czech Republic
Department of Clinical Hematology University Hospital Brno Brno Czech Republic
Department of Internal Medicine Hematology and Oncology University Hospital Brno Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25008542
- 003
- CZ-PrNML
- 005
- 20250422095636.0
- 007
- ta
- 008
- 250408s2025 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s13008-025-00143-3 $2 doi
- 035 __
- $a (PubMed)39881385
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Růžičková, Tereza $u Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic $u Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
- 245 10
- $a Detection of early relapse in multiple myeloma patients / $c T. Růžičková, M. Vlachová, L. Pečinka, M. Brychtová, M. Večeřa, L. Radová, S. Ševčíková, M. Jarošová, J. Havel, L. Pour, S. Ševčíková
- 520 9_
- $a BACKGROUND: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times. It is currently not possible to predict when relapse will occur; numerous studies investigating the dysregulation of non-coding RNA molecules in cancer suggest that microRNAs could be good markers of relapse. RESULTS: Using small RNA sequencing, we profiled microRNA expression in peripheral blood in three groups of MM patients who relapsed at different intervals. In total, 24 microRNAs were significantly dysregulated among analyzed subgroups. Independent validation by RT-qPCR confirmed changed levels of miR-598-3p in MM patients with different times to relapse. At the same time, differences in the mass spectra between groups were identified using matrix-assisted laser desorption/ionization time of flight mass spectrometry. All results were analyzed by machine learning. CONCLUSION: Mass spectrometry coupled with machine learning shows potential as a reliable, rapid, and cost-effective preliminary screening technique to supplement current diagnostics.
- 590 __
- $a NEINDEXOVÁNO
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Vlachová, Monika $u Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Pečinka, Lukáš $u Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- 700 1_
- $a Brychtová, Monika $u Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Večeřa, Marek $u Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Radová, Lenka $u Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Ševčíková, Simona $u Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Jarošová, Marie $u Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
- 700 1_
- $a Havel, Josef $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Pour, Luděk $u Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
- 700 1_
- $a Ševčíková, Sabina $u Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. sevcik@med.muni.cz $u Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic. sevcik@med.muni.cz $1 https://orcid.org/0000000271946771
- 773 0_
- $w MED00173234 $t Cell division $x 1747-1028 $g Roč. 20, č. 1 (2025), s. 4
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39881385 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250408 $b ABA008
- 991 __
- $a 20250422095638 $b ABA008
- 999 __
- $a ok $b bmc $g 2306411 $s 1245617
- BAS __
- $a 3
- BAS __
- $a PreBMC-PubMed-not-MEDLINE
- BMC __
- $a 2025 $b 20 $c 1 $d 4 $e 20250129 $i 1747-1028 $m Cell division $n Cell Div $x MED00173234
- GRA __
- $a MUNI/A/1587/2023 $p Masarykova Univerzita
- GRA __
- $a FNBr, 65269705 $p University Hospital Brno
- GRA __
- $a AZV NU21-03-00076 $p Ministerstvo Zdravotnictví Ceské Republiky
- GRA __
- $a Programme EXCELES, ID Project No. LX22NPO5102 $p European Union
- LZP __
- $a Pubmed-20250408