Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Light-dependent flavin redox and adduct states control the conformation and DNA-binding activity of the transcription factor EL222

AS. Chaudhari, A. Favier, ZA. Tehrani, T. Kovaľ, I. Andersson, B. Schneider, J. Dohnálek, J. Černý, B. Brutscher, G. Fuertes

. 2025 ; 53 (6) : . [pub] 20250320

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25009455

Grantová podpora
24-11819S Czech Science Foundation
RVO86652036 Czech Academy of Sciences
LM2023042 MEYS
CZ.02.1.01/0.0/0.0/18_046/0015974 UP CIISB
871037 iNEXT-Discovery
Horizon 2020
FR2054 IR INFRANALYTICS
UAR 3518 CNRS-CEA-UGA-EMBL Grenoble Instruct-ERIC
ANR-10-INBS-0005-02 FRISBI
ANR-17-EURE-0003 CBH-EUR-GS
90254 e-Infrastruktura CZ
LM2023055 ELIXIR CZ Research Infrastructure

The activity of the light-oxygen-voltage/helix-turn-helix (LOV-HTH) photoreceptor EL222 is regulated through protein-protein and protein-DNA interactions, both triggered by photo-excitation of its flavin mononucleotide (FMN) cofactor. To gain molecular-level insight into the photocycle of EL222, we applied complementary methods: macromolecular X-ray crystallography (MX), nuclear magnetic resonance (NMR) spectroscopy, optical spectroscopies (infrared and UV-visible), molecular dynamics/metadynamics (MD/metaD) simulations, and protein engineering using noncanonical amino acids. Kinetic experiments provided evidence for two distinct EL222 conformations (lit1 and lit2) that become sequentially populated under illumination. These two lit states were assigned to covalently bound N5 protonated, and noncovalently bound hydroquinone forms of FMN, respectively. Only subtle structural differences were observed between the monomeric forms of all three EL222 species (dark, lit1, and lit2). While the dark state is largely monomeric, both lit states undergo monomer-dimer exchange. Furthermore, molecular modeling revealed differential dynamics and interdomain separation times arising from the three FMN states (oxidized, adduct, and reduced). Unexpectedly, all three EL222 species can associate with DNA, but only upon blue-light irradiation, a high population of stable complexes is obtained. Overall, we propose a model of EL222 activation where photoinduced changes in the FMN moiety shift the population equilibrium toward an open conformation that favors self-association and DNA-binding.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25009455
003      
CZ-PrNML
005      
20250429134757.0
007      
ta
008      
250415s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/nar/gkaf215 $2 doi
035    __
$a (PubMed)40119733
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Chaudhari, Aditya S $u Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic $u Faculty of Science, Charles University, Prague 11636, Czech Republic
245    10
$a Light-dependent flavin redox and adduct states control the conformation and DNA-binding activity of the transcription factor EL222 / $c AS. Chaudhari, A. Favier, ZA. Tehrani, T. Kovaľ, I. Andersson, B. Schneider, J. Dohnálek, J. Černý, B. Brutscher, G. Fuertes
520    9_
$a The activity of the light-oxygen-voltage/helix-turn-helix (LOV-HTH) photoreceptor EL222 is regulated through protein-protein and protein-DNA interactions, both triggered by photo-excitation of its flavin mononucleotide (FMN) cofactor. To gain molecular-level insight into the photocycle of EL222, we applied complementary methods: macromolecular X-ray crystallography (MX), nuclear magnetic resonance (NMR) spectroscopy, optical spectroscopies (infrared and UV-visible), molecular dynamics/metadynamics (MD/metaD) simulations, and protein engineering using noncanonical amino acids. Kinetic experiments provided evidence for two distinct EL222 conformations (lit1 and lit2) that become sequentially populated under illumination. These two lit states were assigned to covalently bound N5 protonated, and noncovalently bound hydroquinone forms of FMN, respectively. Only subtle structural differences were observed between the monomeric forms of all three EL222 species (dark, lit1, and lit2). While the dark state is largely monomeric, both lit states undergo monomer-dimer exchange. Furthermore, molecular modeling revealed differential dynamics and interdomain separation times arising from the three FMN states (oxidized, adduct, and reduced). Unexpectedly, all three EL222 species can associate with DNA, but only upon blue-light irradiation, a high population of stable complexes is obtained. Overall, we propose a model of EL222 activation where photoinduced changes in the FMN moiety shift the population equilibrium toward an open conformation that favors self-association and DNA-binding.
650    12
$a oxidace-redukce $7 D010084
650    12
$a flavinmononukleotid $x chemie $x metabolismus $7 D005486
650    12
$a světlo $7 D008027
650    12
$a DNA $x chemie $x metabolismus $7 D004247
650    _2
$a bakteriální proteiny $x chemie $x metabolismus $7 D001426
650    _2
$a krystalografie rentgenová $7 D018360
650    _2
$a vazba proteinů $7 D011485
650    _2
$a transkripční faktory $x metabolismus $x chemie $7 D014157
650    _2
$a simulace molekulární dynamiky $7 D056004
650    _2
$a konformace proteinů $7 D011487
650    _2
$a DNA vazebné proteiny $x chemie $x metabolismus $7 D004268
650    _2
$a kinetika $7 D007700
650    _2
$a Thermosynechococcus $x metabolismus $7 D000086325
650    _2
$a flaviny $x chemie $x metabolismus $7 D005415
655    _2
$a časopisecké články $7 D016428
700    1_
$a Favier, Adrien $u Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble Cedex 9, 38044, France $1 https://orcid.org/0000000325112300
700    1_
$a Tehrani, Zahra Aliakbar $u Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
700    1_
$a Kovaľ, Tomáš $u Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic $1 https://orcid.org/0000000228363765
700    1_
$a Andersson, Inger $u Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic $u Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
700    1_
$a Schneider, Bohdan $u Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic $1 https://orcid.org/0000000178553690
700    1_
$a Dohnálek, Jan $u Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
700    1_
$a Černý, Jiří $u Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic $1 https://orcid.org/0000000219699304
700    1_
$a Brutscher, Bernhard $u Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble Cedex 9, 38044, France $1 https://orcid.org/0000000176527384
700    1_
$a Fuertes, Gustavo $u Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic $1 https://orcid.org/0000000285648644
773    0_
$w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 53, č. 6 (2025)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40119733 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429134753 $b ABA008
999    __
$a ok $b bmc $g 2311066 $s 1246536
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 53 $c 6 $e 20250320 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
GRA    __
$a 24-11819S $p Czech Science Foundation
GRA    __
$a RVO86652036 $p Czech Academy of Sciences
GRA    __
$a LM2023042 $p MEYS
GRA    __
$a CZ.02.1.01/0.0/0.0/18_046/0015974 $p UP CIISB
GRA    __
$a 871037 $p iNEXT-Discovery
GRA    __
$p Horizon 2020
GRA    __
$a FR2054 $p IR INFRANALYTICS
GRA    __
$a UAR 3518 CNRS-CEA-UGA-EMBL $p Grenoble Instruct-ERIC
GRA    __
$a ANR-10-INBS-0005-02 $p FRISBI
GRA    __
$a ANR-17-EURE-0003 $p CBH-EUR-GS
GRA    __
$a 90254 $p e-Infrastruktura CZ
GRA    __
$a LM2023055 $p ELIXIR CZ Research Infrastructure
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...