-
Something wrong with this record ?
Light-dependent flavin redox and adduct states control the conformation and DNA-binding activity of the transcription factor EL222
AS. Chaudhari, A. Favier, ZA. Tehrani, T. Kovaľ, I. Andersson, B. Schneider, J. Dohnálek, J. Černý, B. Brutscher, G. Fuertes
Language English Country England, Great Britain
Document type Journal Article
Grant support
24-11819S
Czech Science Foundation
RVO86652036
Czech Academy of Sciences
LM2023042
MEYS
CZ.02.1.01/0.0/0.0/18_046/0015974
UP CIISB
871037
iNEXT-Discovery
Horizon 2020
FR2054
IR INFRANALYTICS
UAR 3518 CNRS-CEA-UGA-EMBL
Grenoble Instruct-ERIC
ANR-10-INBS-0005-02
FRISBI
ANR-17-EURE-0003
CBH-EUR-GS
90254
e-Infrastruktura CZ
LM2023055
ELIXIR CZ Research Infrastructure
NLK
Directory of Open Access Journals
from 2005
Free Medical Journals
from 1996
PubMed Central
from 1974
Europe PubMed Central
from 1974
Open Access Digital Library
from 1996-01-01 to 2030-12-31
Open Access Digital Library
from 1974-01-01
Open Access Digital Library
from 1996-01-01
Open Access Digital Library
from 1996-01-01
Medline Complete (EBSCOhost)
from 1996-01-01
Oxford Journals Open Access Collection
from 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
from 1974
PubMed
40119733
DOI
10.1093/nar/gkaf215
Knihovny.cz E-resources
- MeSH
- Bacterial Proteins chemistry metabolism MeSH
- DNA-Binding Proteins chemistry metabolism MeSH
- DNA * chemistry metabolism MeSH
- Flavin Mononucleotide * chemistry metabolism MeSH
- Flavins chemistry metabolism MeSH
- Kinetics MeSH
- Protein Conformation MeSH
- Crystallography, X-Ray MeSH
- Oxidation-Reduction * MeSH
- Molecular Dynamics Simulation MeSH
- Light * MeSH
- Thermosynechococcus metabolism MeSH
- Transcription Factors metabolism chemistry MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
The activity of the light-oxygen-voltage/helix-turn-helix (LOV-HTH) photoreceptor EL222 is regulated through protein-protein and protein-DNA interactions, both triggered by photo-excitation of its flavin mononucleotide (FMN) cofactor. To gain molecular-level insight into the photocycle of EL222, we applied complementary methods: macromolecular X-ray crystallography (MX), nuclear magnetic resonance (NMR) spectroscopy, optical spectroscopies (infrared and UV-visible), molecular dynamics/metadynamics (MD/metaD) simulations, and protein engineering using noncanonical amino acids. Kinetic experiments provided evidence for two distinct EL222 conformations (lit1 and lit2) that become sequentially populated under illumination. These two lit states were assigned to covalently bound N5 protonated, and noncovalently bound hydroquinone forms of FMN, respectively. Only subtle structural differences were observed between the monomeric forms of all three EL222 species (dark, lit1, and lit2). While the dark state is largely monomeric, both lit states undergo monomer-dimer exchange. Furthermore, molecular modeling revealed differential dynamics and interdomain separation times arising from the three FMN states (oxidized, adduct, and reduced). Unexpectedly, all three EL222 species can associate with DNA, but only upon blue-light irradiation, a high population of stable complexes is obtained. Overall, we propose a model of EL222 activation where photoinduced changes in the FMN moiety shift the population equilibrium toward an open conformation that favors self-association and DNA-binding.
Department of Cell and Molecular Biology Uppsala University Uppsala 75124 Sweden
Faculty of Science Charles University Prague 11636 Czech Republic
Université Grenoble Alpes CEA CNRS Institut de Biologie Structurale Grenoble Cedex 9 38044 France
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25009455
- 003
- CZ-PrNML
- 005
- 20250429134757.0
- 007
- ta
- 008
- 250415s2025 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/nar/gkaf215 $2 doi
- 035 __
- $a (PubMed)40119733
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Chaudhari, Aditya S $u Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic $u Faculty of Science, Charles University, Prague 11636, Czech Republic
- 245 10
- $a Light-dependent flavin redox and adduct states control the conformation and DNA-binding activity of the transcription factor EL222 / $c AS. Chaudhari, A. Favier, ZA. Tehrani, T. Kovaľ, I. Andersson, B. Schneider, J. Dohnálek, J. Černý, B. Brutscher, G. Fuertes
- 520 9_
- $a The activity of the light-oxygen-voltage/helix-turn-helix (LOV-HTH) photoreceptor EL222 is regulated through protein-protein and protein-DNA interactions, both triggered by photo-excitation of its flavin mononucleotide (FMN) cofactor. To gain molecular-level insight into the photocycle of EL222, we applied complementary methods: macromolecular X-ray crystallography (MX), nuclear magnetic resonance (NMR) spectroscopy, optical spectroscopies (infrared and UV-visible), molecular dynamics/metadynamics (MD/metaD) simulations, and protein engineering using noncanonical amino acids. Kinetic experiments provided evidence for two distinct EL222 conformations (lit1 and lit2) that become sequentially populated under illumination. These two lit states were assigned to covalently bound N5 protonated, and noncovalently bound hydroquinone forms of FMN, respectively. Only subtle structural differences were observed between the monomeric forms of all three EL222 species (dark, lit1, and lit2). While the dark state is largely monomeric, both lit states undergo monomer-dimer exchange. Furthermore, molecular modeling revealed differential dynamics and interdomain separation times arising from the three FMN states (oxidized, adduct, and reduced). Unexpectedly, all three EL222 species can associate with DNA, but only upon blue-light irradiation, a high population of stable complexes is obtained. Overall, we propose a model of EL222 activation where photoinduced changes in the FMN moiety shift the population equilibrium toward an open conformation that favors self-association and DNA-binding.
- 650 12
- $a oxidace-redukce $7 D010084
- 650 12
- $a flavinmononukleotid $x chemie $x metabolismus $7 D005486
- 650 12
- $a světlo $7 D008027
- 650 12
- $a DNA $x chemie $x metabolismus $7 D004247
- 650 _2
- $a bakteriální proteiny $x chemie $x metabolismus $7 D001426
- 650 _2
- $a krystalografie rentgenová $7 D018360
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a transkripční faktory $x metabolismus $x chemie $7 D014157
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a konformace proteinů $7 D011487
- 650 _2
- $a DNA vazebné proteiny $x chemie $x metabolismus $7 D004268
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a Thermosynechococcus $x metabolismus $7 D000086325
- 650 _2
- $a flaviny $x chemie $x metabolismus $7 D005415
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Favier, Adrien $u Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble Cedex 9, 38044, France $1 https://orcid.org/0000000325112300
- 700 1_
- $a Tehrani, Zahra Aliakbar $u Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
- 700 1_
- $a Kovaľ, Tomáš $u Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic $1 https://orcid.org/0000000228363765
- 700 1_
- $a Andersson, Inger $u Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic $u Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
- 700 1_
- $a Schneider, Bohdan $u Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic $1 https://orcid.org/0000000178553690
- 700 1_
- $a Dohnálek, Jan $u Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
- 700 1_
- $a Černý, Jiří $u Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic $1 https://orcid.org/0000000219699304
- 700 1_
- $a Brutscher, Bernhard $u Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble Cedex 9, 38044, France $1 https://orcid.org/0000000176527384
- 700 1_
- $a Fuertes, Gustavo $u Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic $1 https://orcid.org/0000000285648644
- 773 0_
- $w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 53, č. 6 (2025)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40119733 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250415 $b ABA008
- 991 __
- $a 20250429134753 $b ABA008
- 999 __
- $a ok $b bmc $g 2311066 $s 1246536
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 53 $c 6 $e 20250320 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
- GRA __
- $a 24-11819S $p Czech Science Foundation
- GRA __
- $a RVO86652036 $p Czech Academy of Sciences
- GRA __
- $a LM2023042 $p MEYS
- GRA __
- $a CZ.02.1.01/0.0/0.0/18_046/0015974 $p UP CIISB
- GRA __
- $a 871037 $p iNEXT-Discovery
- GRA __
- $p Horizon 2020
- GRA __
- $a FR2054 $p IR INFRANALYTICS
- GRA __
- $a UAR 3518 CNRS-CEA-UGA-EMBL $p Grenoble Instruct-ERIC
- GRA __
- $a ANR-10-INBS-0005-02 $p FRISBI
- GRA __
- $a ANR-17-EURE-0003 $p CBH-EUR-GS
- GRA __
- $a 90254 $p e-Infrastruktura CZ
- GRA __
- $a LM2023055 $p ELIXIR CZ Research Infrastructure
- LZP __
- $a Pubmed-20250415