Protected area characteristics that help waterbirds respond to climate warming
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, Non-U.S. Gov't
PubMed
34927284
PubMed Central
PMC10286641
DOI
10.1111/cobi.13877
Knihovny.cz E-resources
- Keywords
- Directiva de Aves de la UE, EU Birds Directive, LIFE program, adaptación climática, cambios en la distribución, climate adaptation, colonización, colonization, conservation policy, distribution change, humedal, políticas de conservación, programa LIFE, wetland,
- MeSH
- Biodiversity * MeSH
- Ecosystem MeSH
- Climate Change MeSH
- Climate MeSH
- Birds physiology MeSH
- Conservation of Natural Resources * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Protected area networks help species respond to climate warming. However, the contribution of a site's environmental and conservation-relevant characteristics to these responses is not well understood. We investigated how composition of nonbreeding waterbird communities (97 species) in the European Union Natura 2000 (N2K) network (3018 sites) changed in response to increases in temperature over 25 years in 26 European countries. We measured community reshuffling based on abundance time series collected under the International Waterbird Census relative to N2K sites' conservation targets, funding, designation period, and management plan status. Waterbird community composition in sites explicitly designated to protect them and with management plans changed more quickly in response to climate warming than in other N2K sites. Temporal community changes were not affected by the designation period despite greater exposure to temperature increase inside late-designated N2K sites. Sites funded under the LIFE program had lower climate-driven community changes than sites that did not received LIFE funding. Our findings imply that efficient conservation policy that helps waterbird communities respond to climate warming is associated with sites specifically managed for waterbirds.
Las redes de áreas protegidas ayudan a las especies a responder al calentamiento climático. Sin embargo, se sabe muy poco sobre la contribución de las características ambientales y relevantes para la conservación de un sitio a estas respuestas. Investigamos cómo la composición de las comunidades no reproductivas de aves acuáticas (97 especies) en la red (3,018 sitios) Natura 2000 de la Unión Europea (N2K) cambió en respuesta a los incrementos de la temperatura durante más de 25 años en 26 países europeos. Medimos la reorganización comunitaria con base en series temporales de abundancia recolectadas durante el Censo Internacional de Aves Acuáticas en relación con los objetivos de conservación de los sitios N2K, el periodo de asignación de fondos y el estado del plan de manejo. La composición comunitaria de las aves acuáticas en los sitios con planes de manejo y designados explícitamente para su protección cambió más rápidamente en respuesta al calentamiento climático que en otros sitios N2K. Los cambios comunitarios temporales no se vieron afectados por el periodo de asignación a pesar de una mayor exposición al incremento de la temperatura dentro de los sitios N2K de asignación tardía. Los sitios financiados por el programa LIFE tuvieron menos cambios comunitarios causados por el clima que los sitios que no recibieron este financiamiento. Nuestros hallazgos sugieren que la política de conservación eficiente que ayuda a las comunidades de aves acuáticas a responder al calentamiento climático está asociada con sitios específicamente gestionados para las aves acuáticas.
1 WeBS Office BirdWatch Ireland Wicklow Ireland
BirdLife Cyprus Nicosia Cyprus
BirdLife Österreich Vienna Austria
British Trust for Ornithology Thetford UK
Conservation Department Bulgarian Society for the Protection of Birds Sofia Bulgaria
Cornell Lab of Ornithology Cornell University Ithaca New York USA
Croatian Society for Bird and Nature Protection Zagreb Croatia
Dachverband Deutscher Avifaunisten e 5 Federation of German Avifaunists Münster Germany
Département Études Aves Natagora Namur Belgium
Department of Biology Lund University Lund Sweden
Department of Biology University of Turku Turku Finland
Department of Bioscience Aarhus University Rønde Denmark
Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
Department of Terrestrial Ecology Norwegian Institute for Nature Research Trondheim Norway
Department of Vertebrate Ecology and Zoology Faculty of Biology University of Gdańsk Gdańsk Poland
DOPPS BirdLife Slovenia Ljubljana Slovenia
Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
Hellenic Ornithological Society Athens Greece
Institute of Biology University of Latvia Salaspils Latvia
Institute of Wildlife Management and Vertebrate Zoology University of Sopron Sopron Hungary
Instituto da Conservação da Natureza e das Florestas IP Lisbon Portugal
International Institute for Applied Systems Analysis Laxenburg Austria
Istituto Superiore per la Protezione e la Ricerca Ambientale Ozzano dell'Emilia Italy
Lithuanian Ornithological Society Vilnius Lithuania
LPO BirdLife France Fonderies Royales Rochefort France
Research Institute for Nature and Forest Brussel Belgium
Romanian Ornithological Society Bucharest Romania
Sociedad Española de Ornitología Madrid Spain
SOS BirdLife Slovakia Bratislava Slovakia
Sovon Dutch Centre for Field Ornithology Nijmegen The Netherlands
The Finnish Museum of Natural History University of Helsinki Helsinki Finland
See more in PubMed
Amano, T. , Székely, T. , Sandel, B. , Nagy, S. , Mundkur, T. , Langendoen, T. , Blanco, D. , Soykan, C. , & Sutherland, W. J. (2018). Successful conservation of global waterbird populations depends on effective governance. Nature, 553(7687), 199–202. PubMed
Ausden, M. (2014). Climate change adaptation: Putting principles into practice. Environmental Management, 54(4), 685–698. PubMed
Auffret, A. G. , & Thomas, C. D. (2019). Synergistic and antagonistic effects of land use and non‐native species on community responses to climate change. Global Change Biology, 25(12), 4303–4314. PubMed
BirdLife International and HBW . (2017). Bird species distribution maps of the world . Version 7.0. https://datazone.birdlife.org/species/requestdis
Delany, S. (2010). Guidance on waterbird monitoring methodology: Field protocol for waterbird counting . Wetlands International.
Devictor, V. , Julliard, R. , Couvet, D. , & Jiguet, F. (2008). Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B: Biological Sciences, 275(1652), 2743–2748. PubMed PMC
Devictor, V. , Van Swaay, C. , Brereton, T. , Brotons, L. , Chamberlain, D. , Heliölä, J. , Herrando, S. , Julliard, R. , Kuussaari, M. , Lindström, A. , Reif, J. , Roy, D. B. , Schweiger, O. , Settele, J. , Stefanescu, C. , Strien, A. V. , Turnhout, C. V. , Vermouzek, Z. , WallisDeVries, M. , … Jiguet, F. (2012). Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2(2), 121–124.
Engelhard, G. H. , Righton, D. A. , & Pinnegar, J. K. (2014). Climate change and fishing: A century of shifting distribution in North Sea cod. Global Change Biology, 20(8), 2473–2483. PubMed PMC
European Commission . (2020). Communication from the Commission to the EUROPEAN Parliament, the Council, the European Economic and Social Committee and the Committee of the regions EU Biodiversity Strategy for 2030 Bringing nature back into our lives (COM/2020/380 final). Author.
Essl, F. , Dullinger, S. , Rabitsch, W. , Hulme, P. E. , Pyšek, P. , Wilson, J. R. , & Richardson, D. M. (2015). Delayed biodiversity change: No time to waste. Trends in Ecology & Evolution, 30(7), 375–378. PubMed
Gaget, E. , Galewski, T. , Jiguet, F. , Guelmami, A. , Perennou, C. , Beltrame, C. , & Le Viol, I. (2020). Antagonistic effect of natural habitat conversion on community adjustment to climate warming in nonbreeding waterbirds. Conservation Biology, 34(4), 966–976. PubMed
Gaget, E. , Galewski, T. , Jiguet, F. , & Le Viol, I. (2018). Waterbird communities adjust to climate warming according to conservation policy and species protection status. Biological Conservation, 227, 205–212.
Gaget, E. , Pavón‐Jordán, D. , Johnston, A. , Lehikoinen, A. , Hochachka, W. M. , Sandercock, B. K. , Soultan, A. , Azafzaf, H. , Bendjedda, N. , Bino, T. , Božič, L. , Clausen, P. , Dakki, M. , Devos, K. , Domsa, C. , Encarnação, V. , Erciyas‐Yavuz, K. , Faragó, S. , Frost, T. , … Brommer, J. E. (2021). Benefits of protected areas for nonbreeding waterbirds adjusting their distributions under climate warming. Conservation Biology, 35(3), 834–845. PubMed PMC
Gaüzère, P. , Jiguet, F. , & Devictor, V. (2016). Can protected areas mitigate the impacts of climate change on bird's species and communities? Diversity and Distributions, 22(6), 625–637.
Giakoumi, S. , Hermoso, V. , Carvalho, S. B. , Markantonatou, V. , Dagys, M. , Iwamura, T. , Probst, W. N. , Smith, R. J. , Yates, k. L. , Almpanidou, V. , Novak, T. , Ben‐Moshe, N. , Katsanevakis, S. , Claudet, J. , Coll, M. , Deidun, A. , Essl, F. , García‐Charton, J. A. , Jimenez, C. , … Vogiatzakis, I. (2019). Conserving European biodiversity across realms. Conservation Letters, 12(1), e12586.
Godet, L. , Jaffré, M. , & Devictor, V. (2011). Waders in winter: Long‐term changes of migratory bird assemblages facing climate change. Biology Letters, 7(5), 714–717. PubMed PMC
Gourlay‐Larour, M. L. , Schricke, V. , Sorin, C. , L'Hostis, M. , & Caizergues, A. (2012). Movements of wintering diving ducks: New insights from nasal saddled individuals. Bird Study, 59(3), 266–278.
Greenwood, O. , Mossman, H. L. , Suggitt, A. J. , Curtis, R. J. , & Maclean, I. M. (2016). Using in situ management to conserve biodiversity under climate change. Journal of Applied Ecology, 53(3), 885–894. PubMed PMC
Hermoso, V. , Clavero, M. , Villero, D. , & Brotons, L. (2017). EU's conservation efforts need more strategic investment to meet continental commitments. Conservation Letters, 10(2), 231–237.
Hochkirch, A. , Schmitt, T. , Beninde, J. , Hiery, M. , Kinitz, T. , Kirschey, J. , Matenaar, D. , Rohde, K. , Stöfen‐O'Brien, A. , Wagner, N. , Andreas, Z. , Lötters, S. , Veith, M. , Proelss, A. , & Zink, A. (2013). Europe needs a new vision for a Natura 2020 network. Conservation Letters, 6(6), 462–467.
Holm, T. E. , & Clausen, P. (2006). Effects of water level management on autumn staging waterbird and macrophyte diversity in three Danish coastal lagoons. Biodiversity & Conservation, 15(14), 4399–4423.
Kati, V. , Hovardas, T. , Dieterich, M. , Ibisch, P. L. , Mihok, B. , & Selva, N. (2015). The challenge of implementing the European network of protected areas Natura 2000. Conservation Biology, 29(1), 260–270. PubMed
van Kerkhoff, L. , Munera, C. , Dudley, N. , Guevara, O. , Wyborn, C. , Figueroa, C. , Dunlop, M. , Abud Hoyos, M. , Castiblanco, J. , & Becerra, L. (2019). Towards future‐oriented conservation: Managing protected areas in an era of climate change. Ambio, 48(7), 699–713. PubMed PMC
Lawler, J. J. , Ruesch, A. S. , Olden, J. D. , & McRae, B. H. (2013). Projected climate‐driven faunal movement routes. Ecology Letters, 16(8), 1014–1022. PubMed
Lawson, C. R. , Bennie, J. J. , Thomas, C. D. , Hodgson, J. A. , & Wilson, R. J. (2014). Active management of protected areas enhances metapopulation expansion under climate change. Conservation Letters, 7(2), 111–118.
Lehikoinen, A. , Jaatinen, K. , Vähätalo, A. V. , Clausen, P. , Crowe, O. , Deceuninck, B. , Hearn, R. , Holt, C. A. , Hornman, M. , Keller, V. , Nilsson, L. , Langendoen, T. , Tománková, I. , Wahl, J. , & Fox, A. D. (2013). Rapid climate driven shifts in wintering distributions of three common waterbird species. Global Change Biology, 19(7), 2071–2081. PubMed
Lehikoinen, P. , Santangeli, A. , Jaatinen, K. , Rajasärkkä, A. , & Lehikoinen, A. (2019). Protected areas act as a buffer against detrimental effects of climate change—Evidence from large‐scale, long‐term abundance data. Global Change Biology, 25(1), 304–313. PubMed
Lenoir, J. , Bertrand, R. , Comte, L. , Bourgeaud, L. , Hattab, T. , Murienne, J. , & Grenouillet, G. (2020). Species better track the shifting isotherms in the oceans than on lands. Nature Ecology & Evolution, 4, 1044–1059. PubMed
Lenth, R. , Singmann, H. , Love, J. , Buerkner, P. , & Herve, M. (2018). emmeans: Estimated marginal means, aka least‐squares means . R package version, 1(1), 3.
Lung, T. , Meller, L. , van Teeffelen, A. J. , Thuiller, W. , & Cabeza, M. (2014). Biodiversity funds and conservation needs in the EU under climate change. Conservation Letters, 7(4), 390–400. PubMed PMC
Maclean, I. M. , Austin, G. E. , Rehfisch, M. M. , Blew, J. A. N. , Crowe, O. , Delany, S. , Koen Devos, K. , Bernard Deceuninck, B. , Klaus Günther, K. , Karsten Laursen, K. , & Van Roomen, M. (2008). Climate change causes rapid changes in the distribution and site abundance of birds in winter. Global Change Biology, 14(11), 2489–2500.
Magnusson, A. , Skaug, H. , Nielsen, A. , Berg, C. , Kristensen, K. , Maechler, M. , van Bentham, K. , Bolker B., & Brooks M. M. (2017). Package ‘glmmTMB’ . R package.
Morice, C. P. , Kennedy, J. J. , Rayner, N. A. , & Jones, P. D. (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. Journal of Geophysical Research: Atmospheres. 10.1029/2011JD017187 DOI
Nagy, S. , Breiner, F. , Anand, M. , Butchart, S. , Flörke, M. , Fluet‐ChouinarD, E. , Guisan, A. , Lammert Hilarides, L. , Jones, V. R. , Kalyakin, M. V. , Lehner, B. , Pearce‐Higgins, J. W. , & Voltzit, O. (2021). Climate change exposure of waterbird species in the African‐Eurasian flyways. Bird Conservation International.
Pavón‐Jordán, D. , Azafzaf, H. , Balaž, M. , Bino, T. , Borg, J. J. , Božič, L. , Butchart, S. H. M. , Clausen, P. , Sniauksta, L. , Dakki, M. , Devos, K. , Domsa, C. , Encarnaçao, V. , Etayeb, K. , Faragó, S. , Fox, A. D. , Frost, T. , & Lehikoinen, A. (2020). Positive impacts of important bird and biodiversity areas on wintering waterbirds under changing temperatures throughout Europe and North Africa. Biological Conservation, 246, 108549.
Pavón‐Jordán, D. , Clausen, P. , Dagys, M. , Devos, K. , Encarnaçao, V. , Fox, A. D. , Frost, T. , Gaudard, C. , Hornman, M. , Keller, V. , Langendoen, T. , Ławicki, L. , Lewis, L. , Lorentsen, S. ‐ H. , Luigujõe, L. , Meissner, W. , Molina, B. , Musil, P. , Musilová, Z. , … Lehikoinen, A. (2019). Habitat and species mediated short and long‐term distributional changes in waterbird abundance linked to variation in European winter weather. Diversity and Distributions, 25(2), 225–239.
Pavón‐Jordán, D. , Fox, A. D. , Clausen, P. , Dagys, M. , Deceuninck, B. , Devos, K. , Hearn, R. , Holt, C. A. , Hornman, M. , Keller, V. , Langendoen, T. , Ławicki, L. , Lorentsen, S. ‐H. , Luigujõe, L. , Meissner, W. , Musil, P. , Nilsson, L. , Paquet, J.‐ Y. , Stipniece, A. , Stroud, D. A. , … Lehikoinen, A. (2015). Climate‐driven changes in winter abundance of a migratory waterbird in relation to EU protected areas. Diversity and Distributions, 21(5), 571–582.
Pearce‐Higgins, J. W. , Bradbury, R. B. , Chamberlain, D. E. , Drewitt, A. , Langston, R. H. W. , & Willis, S. G. (2011). Targeting research to underpin climate change adaptation for birds. Ibis, 153(1), 207–211.
Peach, M. A. , Cohen, J. B. , Frair, J. L. , Zuckerberg, B. , Sullivan, P. , Porter, W. F. , & Lang, C. (2019). Value of protected areas to avian persistence across 20 years of climate and land‐use change. Conservation Biology, 33(2), 423–433. PubMed
R Core Team . (2019). R: A language and environment for statistical computing (Version 3.6.2). R Foundation for Statistical Computing.
Rannow, S. , Macgregor, N. A. , Albrecht, J. , Crick, H. Q. , Förster, M. , Heiland, S. , Janauer, G. A. , Morecroft, M. D. , Neubert, M. , Anca Sârbu, A. , & Sienkiewicz, J. (2014). Managing protected areas under climate change: Challenges and priorities. Environmental Management, 54(4), 732–743. PubMed
Rodrigues, A. S. , & Cazalis, V. (2020). The multifaceted challenge of evaluating protected area effectiveness. Nature Communications, 11(1), 1–4. PubMed PMC
Schinegger, R. , Palt, M. , Segurado, P. , & Schmutz, S. (2016). Untangling the effects of multiple human stressors and their impacts on fish assemblages in European running waters. Science of the Total Environment, 573, 1079–1088. PubMed
van Teeffelen, A. , Meller, L. , van Minnen, J. , Vermaat, J. , & Cabeza, M. (2015). How climate proof is the European Union's biodiversity policy? Regional Environmental Change, 15(6), 997–1010.
Thomas, C. D. , Gillingham, P. K. , Bradbury, R. B. , Roy, D. B. , Anderson, B. J. , Baxter, J. M. , Bourn, N. A. D. , Crick, H. Q. P. , Findon, R. A. , Fox, R. , Hodgson, J. A. , Holt, A. R. , Morecroft, M. D. , O'Hanlon, N. J. , Oliver, T. H. , Pearce‐Higgins, J. W. , Procter, D. A. , Thomas, J. A. , Walker, K. J. , … Hodgson, J. A. (2012). Protected areas facilitate species’ range expansions. Proceedings of the National Academy of Sciences, 109(35), 14063–14068. PubMed PMC
Väänänen, V. M. (2001). Hunting disturbance and the timing of autumn migration in Anas species. Wildlife Biology, 7(3), 3–9.
Wessely, J. , Hülber, K. , Gattringer, A. , Kuttner, M. , Moser, D. , Rabitsch, W. , Schindler, S. , Dullinger, S. , & Essl, F. (2017). Habitat‐based conservation strategies cannot compensate for climate‐change‐induced range loss. Nature Climate Change, 7(11), 823–827.