Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Transcriptome-scale analysis uncovers conserved residues in the hydrophobic core of the bacterial RNA chaperone Hfq required for small regulatory RNA stability

J. McQuail, M. Krepl, K. Katsuya-Gaviria, A. Tabib-Salazar, L. Burchell, T. Bischler, T. Gräfenhan, P. Brear, J. Šponer, BF. Luisi, S. Wigneshweraraj

. 2025 ; 53 (3) : . [pub] 20250124

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25010193

Grantová podpora
BB/V000284/1 BBSRC
222451/Z/21/Z Wellcome Trust - United Kingdom
Boehringer Ingelheim Fonds
RPG-2020-050 Leverhulme Trust
Interdisciplinary Center for Clinical Research, University Hospital of Würzburg
Wellcome Trust - United Kingdom
23-05639S Czech Science Foundation

The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq. By characterizing a systematic alanine mutant library of Hfq to identify amino acid residues that impact survival of Escherichia coli experiencing nitrogen (N) starvation, we corroborated the important role of the three RNA-binding surfaces for Hfq function. We uncovered two, previously uncharacterized, conserved residues, V22 and G34, in the hydrophobic core of Hfq, to have a profound impact on Hfq's RNA-binding activity in vivo. Transcriptome-scale analysis revealed that V22A and G34A Hfq mutants cause widespread destabilization of both sRNA classes, to the same extent as seen in bacteria devoid of Hfq. However, the alanine substitutions at these residues resulted in only modest alteration in stability and structure of Hfq. We propose that V22 and G34 have impact on Hfq function, especially critical under cellular conditions when there is an increased demand for Hfq, such as N starvation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25010193
003      
CZ-PrNML
005      
20250429134800.0
007      
ta
008      
250415s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/nar/gkaf019 $2 doi
035    __
$a (PubMed)39868539
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a McQuail, Josh $u Centre for Bacterial Resistance Biology, Imperial College London, LondonSW7 2AZ, United Kingdom
245    10
$a Transcriptome-scale analysis uncovers conserved residues in the hydrophobic core of the bacterial RNA chaperone Hfq required for small regulatory RNA stability / $c J. McQuail, M. Krepl, K. Katsuya-Gaviria, A. Tabib-Salazar, L. Burchell, T. Bischler, T. Gräfenhan, P. Brear, J. Šponer, BF. Luisi, S. Wigneshweraraj
520    9_
$a The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq. By characterizing a systematic alanine mutant library of Hfq to identify amino acid residues that impact survival of Escherichia coli experiencing nitrogen (N) starvation, we corroborated the important role of the three RNA-binding surfaces for Hfq function. We uncovered two, previously uncharacterized, conserved residues, V22 and G34, in the hydrophobic core of Hfq, to have a profound impact on Hfq's RNA-binding activity in vivo. Transcriptome-scale analysis revealed that V22A and G34A Hfq mutants cause widespread destabilization of both sRNA classes, to the same extent as seen in bacteria devoid of Hfq. However, the alanine substitutions at these residues resulted in only modest alteration in stability and structure of Hfq. We propose that V22 and G34 have impact on Hfq function, especially critical under cellular conditions when there is an increased demand for Hfq, such as N starvation.
650    12
$a protein hostitelského faktoru 1 $x metabolismus $x genetika $x chemie $7 D035001
650    12
$a Escherichia coli $x genetika $x metabolismus $7 D004926
650    12
$a proteiny z Escherichia coli $x metabolismus $x genetika $x chemie $7 D029968
650    12
$a malá nekódující RNA $x metabolismus $x genetika $x chemie $7 D058727
650    12
$a bakteriální RNA $x metabolismus $x genetika $x chemie $7 D012329
650    12
$a stabilita RNA $x genetika $7 D020871
650    12
$a hydrofobní a hydrofilní interakce $7 D057927
650    _2
$a regulace genové exprese u bakterií $7 D015964
650    _2
$a transkriptom $x genetika $7 D059467
650    _2
$a mutace $7 D009154
650    _2
$a dusík $x metabolismus $7 D009584
650    _2
$a konzervovaná sekvence $7 D017124
650    _2
$a stanovení celkové genové exprese $7 D020869
650    _2
$a vazba proteinů $7 D011485
655    _2
$a časopisecké články $7 D016428
700    1_
$a Krepl, Miroslav $u Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno612 00, Czech Republic $1 https://orcid.org/0000000298334281
700    1_
$a Katsuya-Gaviria, Kai $u Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
700    1_
$a Tabib-Salazar, Aline $u Centre for Bacterial Resistance Biology, Imperial College London, LondonSW7 2AZ, United Kingdom
700    1_
$a Burchell, Lynn $u Centre for Bacterial Resistance Biology, Imperial College London, LondonSW7 2AZ, United Kingdom
700    1_
$a Bischler, Thorsten $u Core Unit Systems Medicine, University of Würzburg, D-97080 Würzburg, Germany
700    1_
$a Gräfenhan, Tom $u Core Unit Systems Medicine, University of Würzburg, D-97080 Würzburg, Germany
700    1_
$a Brear, Paul $u Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
700    1_
$a Šponer, Jiří $u Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno612 00, Czech Republic
700    1_
$a Luisi, Ben F $u Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom $1 https://orcid.org/0000000311449877
700    1_
$a Wigneshweraraj, Sivaramesh $u Centre for Bacterial Resistance Biology, Imperial College London, LondonSW7 2AZ, United Kingdom $1 https://orcid.org/0000000214184029
773    0_
$w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 53, č. 3 (2025)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39868539 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429134756 $b ABA008
999    __
$a ok $b bmc $g 2311518 $s 1247274
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 53 $c 3 $e 20250124 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
GRA    __
$a BB/V000284/1 $p BBSRC
GRA    __
$a 222451/Z/21/Z $p Wellcome Trust $2 United Kingdom
GRA    __
$p Boehringer Ingelheim Fonds
GRA    __
$a RPG-2020-050 $p Leverhulme Trust
GRA    __
$p Interdisciplinary Center for Clinical Research, University Hospital of Würzburg
GRA    __
$p Wellcome Trust $2 United Kingdom
GRA    __
$a 23-05639S $p Czech Science Foundation
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...