-
Je něco špatně v tomto záznamu ?
Transcriptome-scale analysis uncovers conserved residues in the hydrophobic core of the bacterial RNA chaperone Hfq required for small regulatory RNA stability
J. McQuail, M. Krepl, K. Katsuya-Gaviria, A. Tabib-Salazar, L. Burchell, T. Bischler, T. Gräfenhan, P. Brear, J. Šponer, BF. Luisi, S. Wigneshweraraj
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
Grantová podpora
BB/V000284/1
BBSRC
222451/Z/21/Z
Wellcome Trust - United Kingdom
Boehringer Ingelheim Fonds
RPG-2020-050
Leverhulme Trust
Interdisciplinary Center for Clinical Research, University Hospital of Würzburg
Wellcome Trust - United Kingdom
23-05639S
Czech Science Foundation
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 1996
PubMed Central
od 1974
Europe PubMed Central
od 1974
Open Access Digital Library
od 1996-01-01 do 2030-12-31
Open Access Digital Library
od 1974-01-01
Open Access Digital Library
od 1996-01-01
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1996-01-01
Oxford Journals Open Access Collection
od 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1974
PubMed
39868539
DOI
10.1093/nar/gkaf019
Knihovny.cz E-zdroje
- MeSH
- bakteriální RNA * metabolismus genetika chemie MeSH
- dusík metabolismus MeSH
- Escherichia coli * genetika metabolismus MeSH
- hydrofobní a hydrofilní interakce * MeSH
- konzervovaná sekvence MeSH
- malá nekódující RNA * metabolismus genetika chemie MeSH
- mutace MeSH
- protein hostitelského faktoru 1 * metabolismus genetika chemie MeSH
- proteiny z Escherichia coli * metabolismus genetika chemie MeSH
- regulace genové exprese u bakterií MeSH
- stabilita RNA * genetika MeSH
- stanovení celkové genové exprese MeSH
- transkriptom genetika MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq. By characterizing a systematic alanine mutant library of Hfq to identify amino acid residues that impact survival of Escherichia coli experiencing nitrogen (N) starvation, we corroborated the important role of the three RNA-binding surfaces for Hfq function. We uncovered two, previously uncharacterized, conserved residues, V22 and G34, in the hydrophobic core of Hfq, to have a profound impact on Hfq's RNA-binding activity in vivo. Transcriptome-scale analysis revealed that V22A and G34A Hfq mutants cause widespread destabilization of both sRNA classes, to the same extent as seen in bacteria devoid of Hfq. However, the alanine substitutions at these residues resulted in only modest alteration in stability and structure of Hfq. We propose that V22 and G34 have impact on Hfq function, especially critical under cellular conditions when there is an increased demand for Hfq, such as N starvation.
Centre for Bacterial Resistance Biology Imperial College London LondonSW7 2AZ United Kingdom
Core Unit Systems Medicine University of Würzburg D 97080 Würzburg Germany
Department of Biochemistry University of Cambridge CambridgeCB2 1GA United Kingdom
Institute of Biophysics of the Czech Academy of Sciences Kralovopolska 135 Brno612 00 Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25010193
- 003
- CZ-PrNML
- 005
- 20250429134800.0
- 007
- ta
- 008
- 250415s2025 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/nar/gkaf019 $2 doi
- 035 __
- $a (PubMed)39868539
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a McQuail, Josh $u Centre for Bacterial Resistance Biology, Imperial College London, LondonSW7 2AZ, United Kingdom
- 245 10
- $a Transcriptome-scale analysis uncovers conserved residues in the hydrophobic core of the bacterial RNA chaperone Hfq required for small regulatory RNA stability / $c J. McQuail, M. Krepl, K. Katsuya-Gaviria, A. Tabib-Salazar, L. Burchell, T. Bischler, T. Gräfenhan, P. Brear, J. Šponer, BF. Luisi, S. Wigneshweraraj
- 520 9_
- $a The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq. By characterizing a systematic alanine mutant library of Hfq to identify amino acid residues that impact survival of Escherichia coli experiencing nitrogen (N) starvation, we corroborated the important role of the three RNA-binding surfaces for Hfq function. We uncovered two, previously uncharacterized, conserved residues, V22 and G34, in the hydrophobic core of Hfq, to have a profound impact on Hfq's RNA-binding activity in vivo. Transcriptome-scale analysis revealed that V22A and G34A Hfq mutants cause widespread destabilization of both sRNA classes, to the same extent as seen in bacteria devoid of Hfq. However, the alanine substitutions at these residues resulted in only modest alteration in stability and structure of Hfq. We propose that V22 and G34 have impact on Hfq function, especially critical under cellular conditions when there is an increased demand for Hfq, such as N starvation.
- 650 12
- $a protein hostitelského faktoru 1 $x metabolismus $x genetika $x chemie $7 D035001
- 650 12
- $a Escherichia coli $x genetika $x metabolismus $7 D004926
- 650 12
- $a proteiny z Escherichia coli $x metabolismus $x genetika $x chemie $7 D029968
- 650 12
- $a malá nekódující RNA $x metabolismus $x genetika $x chemie $7 D058727
- 650 12
- $a bakteriální RNA $x metabolismus $x genetika $x chemie $7 D012329
- 650 12
- $a stabilita RNA $x genetika $7 D020871
- 650 12
- $a hydrofobní a hydrofilní interakce $7 D057927
- 650 _2
- $a regulace genové exprese u bakterií $7 D015964
- 650 _2
- $a transkriptom $x genetika $7 D059467
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a dusík $x metabolismus $7 D009584
- 650 _2
- $a konzervovaná sekvence $7 D017124
- 650 _2
- $a stanovení celkové genové exprese $7 D020869
- 650 _2
- $a vazba proteinů $7 D011485
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Krepl, Miroslav $u Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno612 00, Czech Republic $1 https://orcid.org/0000000298334281
- 700 1_
- $a Katsuya-Gaviria, Kai $u Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
- 700 1_
- $a Tabib-Salazar, Aline $u Centre for Bacterial Resistance Biology, Imperial College London, LondonSW7 2AZ, United Kingdom
- 700 1_
- $a Burchell, Lynn $u Centre for Bacterial Resistance Biology, Imperial College London, LondonSW7 2AZ, United Kingdom
- 700 1_
- $a Bischler, Thorsten $u Core Unit Systems Medicine, University of Würzburg, D-97080 Würzburg, Germany
- 700 1_
- $a Gräfenhan, Tom $u Core Unit Systems Medicine, University of Würzburg, D-97080 Würzburg, Germany
- 700 1_
- $a Brear, Paul $u Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
- 700 1_
- $a Šponer, Jiří $u Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno612 00, Czech Republic
- 700 1_
- $a Luisi, Ben F $u Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom $1 https://orcid.org/0000000311449877
- 700 1_
- $a Wigneshweraraj, Sivaramesh $u Centre for Bacterial Resistance Biology, Imperial College London, LondonSW7 2AZ, United Kingdom $1 https://orcid.org/0000000214184029
- 773 0_
- $w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 53, č. 3 (2025)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39868539 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250415 $b ABA008
- 991 __
- $a 20250429134756 $b ABA008
- 999 __
- $a ok $b bmc $g 2311518 $s 1247274
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 53 $c 3 $e 20250124 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
- GRA __
- $a BB/V000284/1 $p BBSRC
- GRA __
- $a 222451/Z/21/Z $p Wellcome Trust $2 United Kingdom
- GRA __
- $p Boehringer Ingelheim Fonds
- GRA __
- $a RPG-2020-050 $p Leverhulme Trust
- GRA __
- $p Interdisciplinary Center for Clinical Research, University Hospital of Würzburg
- GRA __
- $p Wellcome Trust $2 United Kingdom
- GRA __
- $a 23-05639S $p Czech Science Foundation
- LZP __
- $a Pubmed-20250415