Transcriptome-scale analysis uncovers conserved residues in the hydrophobic core of the bacterial RNA chaperone Hfq required for small regulatory RNA stability
Language English Country England, Great Britain Media print
Document type Journal Article
Grant support
BB/V000284/1
BBSRC
222451/Z/21/Z
Wellcome Trust - United Kingdom
Boehringer Ingelheim Fonds
RPG-2020-050
Leverhulme Trust
Interdisciplinary Center for Clinical Research, University Hospital of Würzburg
Wellcome Trust - United Kingdom
23-05639S
Czech Science Foundation
PubMed
39868539
PubMed Central
PMC11770335
DOI
10.1093/nar/gkaf019
PII: 7983884
Knihovny.cz E-resources
- MeSH
- RNA, Bacterial * metabolism genetics MeSH
- Nitrogen metabolism MeSH
- Escherichia coli genetics metabolism MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Conserved Sequence MeSH
- RNA, Small Untranslated * metabolism genetics MeSH
- Molecular Chaperones genetics metabolism chemistry MeSH
- Mutation MeSH
- Host Factor 1 Protein * genetics chemistry metabolism MeSH
- Escherichia coli Proteins * genetics chemistry metabolism MeSH
- Gene Expression Regulation, Bacterial MeSH
- RNA Stability * MeSH
- Gene Expression Profiling MeSH
- Transcriptome MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA, Bacterial * MeSH
- Nitrogen MeSH
- Hfq protein, E coli MeSH Browser
- RNA, Small Untranslated * MeSH
- Molecular Chaperones MeSH
- Host Factor 1 Protein * MeSH
- Escherichia coli Proteins * MeSH
The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq. By characterizing a systematic alanine mutant library of Hfq to identify amino acid residues that impact survival of Escherichia coli experiencing nitrogen (N) starvation, we corroborated the important role of the three RNA-binding surfaces for Hfq function. We uncovered two, previously uncharacterized, conserved residues, V22 and G34, in the hydrophobic core of Hfq, to have a profound impact on Hfq's RNA-binding activity in vivo. Transcriptome-scale analysis revealed that V22A and G34A Hfq mutants cause widespread destabilization of both sRNA classes, to the same extent as seen in bacteria devoid of Hfq. However, the alanine substitutions at these residues resulted in only modest alteration in stability and structure of Hfq. We propose that V22 and G34 have impact on Hfq function, especially critical under cellular conditions when there is an increased demand for Hfq, such as N starvation.
Centre for Bacterial Resistance Biology Imperial College London LondonSW7 2AZ United Kingdom
Core Unit Systems Medicine University of Würzburg D 97080 Würzburg Germany
Department of Biochemistry University of Cambridge CambridgeCB2 1GA United Kingdom
Institute of Biophysics of the Czech Academy of Sciences Kralovopolska 135 Brno612 00 Czech Republic
See more in PubMed
Vogel J, Luisi BF. Hfq and its constellation of RNA. Nat Rev Microbiol. 2011; 9:578–89. PubMed PMC
Melamed S, Adams PP, Zhang A et al. . RNA–RNA interactomes of ProQ and Hfq reveal overlapping and competing roles. Mol Cell. 2020; 77:411–25. PubMed PMC
Urban JH, Vogel J. Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol. 2008; 6:e64. PubMed PMC
Vytvytska O, Moll I, Kaberdin VR et al. . Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev. 2000; 14:1109–18. PubMed PMC
Pei XY, Dendooven T, Sonnleitner E et al. . Architectural principles for Hfq/Crc-mediated regulation of gene expression. eLife. 2019; 8:e43158. PubMed PMC
Hajnsdorf E, Regnier P. Host factor Hfq of Escherichia coli stimulates elongation of poly(A) tails by poly(A) polymerase I. Proc Natl Acad Sci USA. 2000; 97:1501–5. PubMed PMC
Mohanty BK, Maples VF, Kushner SR. The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol Microbiol. 2004; 54:905–20. PubMed
Wilusz CJ, Wilusz J. Eukaryotic Lsm proteins: lessons from bacteria. Nat Struct Mol Biol. 2005; 12:1031–36. PubMed
Kambach C, Walke S, Young R et al. . Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell. 1999; 96:375–87. PubMed
Orans J, Kovach AR, Hoff KE et al. . Crystal structure of an Escherichia coli Hfq core (residues 2–69)–DNA complex reveals multifunctional nucleic acid binding sites. Nucleic Acids Res. 2020; 48:3987–97. PubMed PMC
Horstmann N, Orans J, Valentin-Hansen P et al. . Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A-tract. Nucleic Acids Res. 2012; 40:11023–35. PubMed PMC
Link TM, Valentin-Hansen P, Brennan RG. Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc Natl Acad Sci USA. 2009; 106:19292–7. PubMed PMC
Santiago-Frangos A, Frohlich KS, Jeliazkov JR et al. . Caulobacter crescentus Hfq structure reveals a conserved mechanism of RNA annealing regulation. Proc Natl Acad Sci USA. 2019; 116:10978–87. PubMed PMC
Sauer E, Schmidt S, Weichenrieder O. Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition. Proc Natl Acad Sci USA. 2012; 109:9396–401. PubMed PMC
Santiago-Frangos A, Kavita K, Schu DJ et al. . C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. Proc Natl Acad Sci USA. 2016; 113:E6089–96. PubMed PMC
Santiago-Frangos A, Jeliazkov JR, Gray JJ et al. . Acidic C-terminal domains autoregulate the RNA chaperone Hfq. eLife. 2017; 6:e27049. PubMed PMC
Kavita K, Zhang A, Tai CH et al. . Multiple in vivo roles for the C-terminal domain of the RNA chaperone Hfq. Nucleic Acids Res. 2022; 50:1718–33. PubMed PMC
Schu DJ, Zhang A, Gottesman S et al. . Alternative Hfq–sRNA interaction modes dictate alternative mRNA recognition. EMBO J. 2015; 34:2557–73. PubMed PMC
Malecka EM, Woodson SA. RNA compaction and iterative scanning for small RNA targets by the Hfq chaperone. Nat Commun. 2024; 15:2069. PubMed PMC
McQuail J, Matera G, Grafenhan T et al. . Global Hfq-mediated RNA interactome of nitrogen starved Escherichia coli uncovers a conserved post-transcriptional regulatory axis required for optimal growth recovery. Nucleic Acids Res. 2024; 52:2323–39. PubMed PMC
McQuail J, Switzer A, Burchell L et al. . The RNA-binding protein Hfq assembles into foci-like structures in nitrogen starved Escherichia coli. J Biol Chem. 2020; 295:12355–67. PubMed PMC
Walling LR, Kouse AB, Shabalina SA et al. . A 3' UTR-derived small RNA connecting nitrogen and carbon metabolism in enteric bacteria. Nucleic Acids Res. 2022; 50:10093–109. PubMed PMC
Switzer A, Burchell L, McQuail J et al. . The adaptive response to long-term nitrogen starvation in Escherichia coli requires the breakdown of allantoin. J Bacteriol. 2020; 202:e00172-20. PubMed PMC
Atlas RM. Handbook of Microbiological Media. 2010; 4th ednLouisville, KY, USA: CRC Press.
Sauter C, Basquin Jrm, Suck D. Sm-like proteins in eubacteria: the crystal structure of the Hfq protein from Escherichia coli. Nucleic Acids Res. 2003; 31:4091–98. PubMed PMC
Case DA, Aktulga HM, Belfon K et al. . AmberTools24. 2021; San Francisco, CA, USA: University of California.
Maier JA, Martinez C, Kasavajhala K et al. . ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015; 11:3696–713. PubMed PMC
Krepl M, Pokorná P, Mlýnský V et al. . Spontaneous binding of single-stranded RNAs to RRM proteins visualized by unbiased atomistic simulations with a rescaled RNA force field. Nucleic Acids Res. 2022; 50:12480–96. PubMed PMC
Tian C, Kasavajhala K, Belfon KAA et al. . ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J Chem Theory Comput. 2020; 16:528–52. PubMed
Izadi S, Anandakrishnan R, Onufriev AV. Building water models: a different approach. J Phys Chem Lett. 2014; 5:3863–71. PubMed PMC
Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987; 91:6269–71.
Joung IS, Cheatham TE. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B. 2008; 112:9020–41. PubMed PMC
Krepl M, Vögele J, Kruse H et al. . An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch. Nucleic Acids Res. 2018; 46:6528–43. PubMed PMC
Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of Cartesian equations of motion of a system with constraints—molecular dynamics of n-alkanes. J Comput Phys. 1977; 23:327–41.
Hopkins CW, Le Grand S, Walker RC et al. . Long-time-step molecular dynamics through hydrogen mass repartitioning. J Chem Theory Comput. 2015; 11:1864–74. PubMed
Darden T, York D, Pedersen L. Particle mesh Ewald—an N.Log(N) method for Ewald sums in large systems. J Chem Phys. 1993; 98:10089–92.
Wang L, Friesner RA, Berne BJ. Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J Phys Chem B. 2011; 115:9431–38. PubMed PMC
Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013; 9:3084–95. PubMed
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996; 14:33–8. PubMed
Afonine PV, Grosse-Kunstleve RW, Echols N et al. . Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr. 2012; 68:352–67. PubMed PMC
Murshudov GN, Skubak P, Lebedev AA et al. . REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011; 67:355–67. PubMed PMC
Emsley P, Lohkamp B, Scott WG et al. . Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010; 66:486–501. PubMed PMC
Stead MB, Agrawal A, Bowden KE et al. . RNAsnap: a rapid, quantitative and inexpensive, method for isolating total RNA from bacteria. Nucleic Acids Res. 2012; 40:e156. PubMed PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011; 17:10–2.
Forstner KU, Vogel J, Sharma CM. READemption—a tool for the computational analysis of deep-sequencing-based transcriptome data. Bioinformatics. 2014; 30:3421–3. PubMed
Hoffmann S, Otto C, Kurtz S et al. . Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol. 2009; 5:e1000502. PubMed PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15:550. PubMed PMC
Zhang A, Schu DJ, Tjaden BC et al. . Mutations in interaction surfaces differentially impact E. coli Hfq association with small RNAs and their mRNA targets. J Mol Biol. 2013; 425:3678–97. PubMed PMC
Mikulecky PJ, Kaw MK, Brescia CC et al. . Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat Struct Mol Biol. 2004; 11:1206–14. PubMed PMC
Dimastrogiovanni D, Frohlich KS, Bandyra KJ et al. . Recognition of the small regulatory RNA RydC by the bacterial Hfq protein. eLife. 2014; 3:e05375. PubMed PMC
Melamed S, Peer A, Faigenbaum-Romm R et al. . Global mapping of small RNA–target interactions in bacteria. Mol Cell. 2016; 63:884–97. PubMed PMC
Fuchs M, Lamm-Schmidt V, Lence T et al. . A network of small RNAs regulates sporulation initiation in Clostridioides difficile. EMBO J. 2023; 42:e112858. PubMed PMC
Huber M, Lippegaus A, Melamed S et al. . An RNA sponge controls quorum sensing dynamics and biofilm formation in Vibrio cholerae. Nat Commun. 2022; 13:7585. PubMed PMC
Matera G, Altuvia Y, Gerovac M et al. . Global RNA interactome of Salmonella discovers a 5′ UTR sponge for the MicF small RNA that connects membrane permeability to transport capacity. Mol Cell. 2022; 82:629–44. PubMed
Pearl Mizrahi S, Elbaz N, Argaman L et al. . The impact of Hfq-mediated sRNA–mRNA interactome on the virulence of enteropathogenic Escherichia coli. Sci Adv. 2021; 7:eabi8228. PubMed PMC
Schumacher MA, Pearson RF, Moller T et al. . Structures of the pleiotropic translational regulator Hfq and an Hfq–RNA complex: a bacterial Sm-like protein. EMBO J. 2002; 21:3546–56. PubMed PMC
Robinson KE, Orans J, Kovach AR et al. . Mapping Hfq–RNA interaction surfaces using tryptophan fluorescence quenching. Nucleic Acids Res. 2014; 42:2736–49. PubMed PMC
Kwiatkowska J, Wroblewska Z, Johnson KA et al. . The binding of class II sRNA MgrR to two different sites on matchmaker protein Hfq enables efficient competition for Hfq and annealing to regulated mRNAs. RNA. 2018; 24:1761–84. PubMed PMC
Switzer A, Evangelopoulos D, Figueira R et al. . A novel regulatory factor affecting the transcription of methionine biosynthesis genes in Escherichia coli experiencing sustained nitrogen starvation. Microbiology (Reading). 2018; 164:1457–70. PubMed
Andrade JM, Dos Santos RF, Chelysheva I et al. . The RNA-binding protein Hfq is important for ribosome biogenesis and affects translation fidelity. EMBO J. 2018; 37:e97631. PubMed PMC
Lee T, Feig AL. The RNA binding protein Hfq interacts specifically with tRNAs. RNA. 2008; 14:514–23. PubMed PMC
Bandyra KJ, Bouvier M, Carpousis AJ et al. . The social fabric of the RNA degradosome. Biochim. Biophys. Acta. 2013; 1829:514–22. PubMed PMC
Luo X, Zhang A, Tai CH et al. . An acetyltranferase moonlights as a regulator of the RNA binding repertoire of the RNA chaperone Hfq in Escherichia coli. Proc Natl Acad Sci USA. 2023; 120:e2311509120. PubMed PMC