Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Machine learning validation of the AVAS classification compared to ultrasound mapping in a multicentre study

K. Lawrie, P. Waldauf, P. Balaz, R. Bortel, R. Lacerda, E. Aitken, K. Letachowicz, M. D'Oria, V. Di Maso, P. Stasko, A. Gomes, J. Fontainhas, M. Pekar, A. Srdelic, VAVASC Study Group, S. O'Neill

. 2025 ; 15 (1) : 2538. [pub] 20250120

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, multicentrická studie, srovnávací studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc25010223

The Arteriovenous Access Stage (AVAS) classification simplifies information about suitability of vessels for vascular access (VA). It's been previously validated in a clinical study. Here, AVAS performance was tested against multiple ultrasound mapping measurements using machine learning. A prospective multicentre international study (NCT04796558) with patient recruitment from March 2021-July 2024. Demographics, risk factors, vessels parameters, types of predicted and created VA (pVA, cVA) were collected. We modelled pVA and cVA using the Random Forest algorithm. Model performance was estimated and compared using Bayesian generalized linear models. ROC AUC with 95% credible intervals was the performance metric. 1151 patients were included. ROC AUC for pVA prediction by AVAS was 0.79 (0.77;0.82) and by mapping was 0.85 (0.83;0.88). ROC AUC for cVA prediction by AVAS was 0.71 (0.69;0.74) and by mapping was 0.8 (0.78;0.83). Using AVAS with other parameters increased the ROC AUC to 0.87 for pVA (0.84;0.89) and 0.82 (0.79;0.84) for cVA. Using mapping with other parameters increased the ROC AUC to 0.88 for pVA (0.86;0.91) and 0.85 (0.83;0.88) for cVA. Multiple mapping measurements showed higher performance at VA prediction than AVAS. However, AVAS is simpler and quicker, so may be preferable for routine clinical practice.

3rd Faculty of Medicine Charles University Prague Czech Republic

AdNa s r o Vascular Surgery Clinic Košice Slovak Republic

Cardiocenter 3rd Faculty of Medicine University Hospital Královské Vinohrady Charles University Prague Czech Republic

Centre for Medical Education Queen's University Belfast Belfast UK

Centre for Vascular and Mini invasive Surgery Hospital AGEL Třinec Podlesí Czech Republic

Department of Anaesthesiology and Resuscitation University Hospital Královské Vinohrady Prague Czech Republic

Department of General Surgery Hospital Professor Doutor Fernando Fonseca Amadora Portugal

Department of Nephrology and Transplantation Medicine Wroclaw Medical University Wroclaw Poland

Department of Physiology Faculty of Medicine Masaryk University Brno Czech Republic

Department of Renal Surgery Queen Elizabeth University Hospital Glasgow UK

Department of Transplant Surgery and Regional Nephrology Unit Belfast City Hospital Belfast UK

Department of Transplantation Surgery Institute for Clinical and Experimental Medicine Prague Czech Republic

Department of Vascular Surgery National Institute for Cardiovascular Disease Bratislava Slovak Republic

Division of Nephrology and Haemodialysis Internal Medicine Department University Hospital of Split Split Croatia

Division of Vascular and Endovascular Surgery Cardio Thoracic Vascular Department University Hospital of Trieste Trieste Italy

Division of Vascular Surgery University Hospital Královské Vinohrady Prague Czech Republic

Faculty of Electrical Engineering Czech Technical University Prague Prague Czech Republic

Nephrology and Dialysis Unit Department of Medicine ASUGI University Hospital of Trieste Trieste Italy

RL Vascular Surgery and Interventional Radiology Private Practice Salvador Brazil

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25010223
003      
CZ-PrNML
005      
20250429135323.0
007      
ta
008      
250415s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-025-86456-3 $2 doi
035    __
$a (PubMed)39833325
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Lawrie, Katerina $u Department of Transplantation Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic $u Third Faculty of Medicine, Charles University, Prague, Czech Republic
245    10
$a Machine learning validation of the AVAS classification compared to ultrasound mapping in a multicentre study / $c K. Lawrie, P. Waldauf, P. Balaz, R. Bortel, R. Lacerda, E. Aitken, K. Letachowicz, M. D'Oria, V. Di Maso, P. Stasko, A. Gomes, J. Fontainhas, M. Pekar, A. Srdelic, VAVASC Study Group, S. O'Neill
520    9_
$a The Arteriovenous Access Stage (AVAS) classification simplifies information about suitability of vessels for vascular access (VA). It's been previously validated in a clinical study. Here, AVAS performance was tested against multiple ultrasound mapping measurements using machine learning. A prospective multicentre international study (NCT04796558) with patient recruitment from March 2021-July 2024. Demographics, risk factors, vessels parameters, types of predicted and created VA (pVA, cVA) were collected. We modelled pVA and cVA using the Random Forest algorithm. Model performance was estimated and compared using Bayesian generalized linear models. ROC AUC with 95% credible intervals was the performance metric. 1151 patients were included. ROC AUC for pVA prediction by AVAS was 0.79 (0.77;0.82) and by mapping was 0.85 (0.83;0.88). ROC AUC for cVA prediction by AVAS was 0.71 (0.69;0.74) and by mapping was 0.8 (0.78;0.83). Using AVAS with other parameters increased the ROC AUC to 0.87 for pVA (0.84;0.89) and 0.82 (0.79;0.84) for cVA. Using mapping with other parameters increased the ROC AUC to 0.88 for pVA (0.86;0.91) and 0.85 (0.83;0.88) for cVA. Multiple mapping measurements showed higher performance at VA prediction than AVAS. However, AVAS is simpler and quicker, so may be preferable for routine clinical practice.
650    _2
$a lidé $7 D006801
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a mužské pohlaví $7 D008297
650    12
$a strojové učení $7 D000069550
650    _2
$a lidé středního věku $7 D008875
650    _2
$a prospektivní studie $7 D011446
650    12
$a ultrasonografie $x metody $7 D014463
650    _2
$a senioři $7 D000368
650    _2
$a arteriovenózní zkrat $7 D001166
650    _2
$a ROC křivka $7 D012372
650    _2
$a Bayesova věta $7 D001499
655    _2
$a časopisecké články $7 D016428
655    _2
$a multicentrická studie $7 D016448
655    _2
$a srovnávací studie $7 D003160
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Waldauf, Petr $u Third Faculty of Medicine, Charles University, Prague, Czech Republic. petr.waldauf@fnkv.cz $u Department of Anaesthesiology and Resuscitation, University Hospital Královské Vinohrady, Prague, Czech Republic. petr.waldauf@fnkv.cz
700    1_
$a Balaz, Peter $u Third Faculty of Medicine, Charles University, Prague, Czech Republic $u Division of Vascular Surgery, University Hospital Královské Vinohrady, Prague, Czech Republic $u Cardiocenter, Third Faculty of Medicine, University Hospital Královské Vinohrady, Charles University, Prague, Czech Republic $u Department of Vascular Surgery, National Institute for Cardiovascular Disease, Bratislava, Slovak Republic
700    1_
$a Bortel, Radoslav $u Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
700    1_
$a Lacerda, Ricardo $u RL Vascular Surgery and Interventional Radiology, Private Practice, Salvador, Brazil
700    1_
$a Aitken, Emma $u Department of Renal Surgery, Queen Elizabeth University Hospital, Glasgow, UK
700    1_
$a Letachowicz, Krzysztof $u Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
700    1_
$a D'Oria, Mario $u Division of Vascular and Endovascular Surgery, Cardio-Thoracic-Vascular Department, University Hospital of Trieste, Trieste, Italy
700    1_
$a Di Maso, Vittorio $u Nephrology and Dialysis Unit, Department of Medicine, ASUGI - University Hospital of Trieste, Trieste, Italy
700    1_
$a Stasko, Pavel $u AdNa s.r.o., Vascular Surgery Clinic, Košice, Slovak Republic
700    1_
$a Gomes, Antonio $u Department of General Surgery, Hospital Professor Doutor Fernando Fonseca, Amadora, Portugal
700    1_
$a Fontainhas, Joana $u Department of General Surgery, Hospital Professor Doutor Fernando Fonseca, Amadora, Portugal
700    1_
$a Pekar, Matej $u Centre for Vascular and Mini-invasive Surgery, Hospital AGEL, Třinec-Podlesí, Czech Republic $u Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
700    1_
$a Srdelic, Alena $u Division of Nephrology and Haemodialysis, Internal Medicine Department, University Hospital of Split, Split, Croatia
700    1_
$a O'Neill, Stephen $u Centre for Medical Education, Queen's University Belfast, Belfast, UK $u Department of Transplant Surgery and Regional Nephrology Unit, Belfast City Hospital, Belfast, UK
710    2_
$a VAVASC Study Group
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 15, č. 1 (2025), s. 2538
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39833325 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429135318 $b ABA008
999    __
$a ok $b bmc $g 2311535 $s 1247304
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 15 $c 1 $d 2538 $e 20250120 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...