-
Je něco špatně v tomto záznamu ?
Machine learning validation of the AVAS classification compared to ultrasound mapping in a multicentre study
K. Lawrie, P. Waldauf, P. Balaz, R. Bortel, R. Lacerda, E. Aitken, K. Letachowicz, M. D'Oria, V. Di Maso, P. Stasko, A. Gomes, J. Fontainhas, M. Pekar, A. Srdelic, VAVASC Study Group, S. O'Neill
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, multicentrická studie, srovnávací studie, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2021-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2021-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
Springer Nature - nature.com Journals - Fully Open Access
od 2011-12-01
- MeSH
- arteriovenózní zkrat MeSH
- Bayesova věta MeSH
- lidé středního věku MeSH
- lidé MeSH
- prospektivní studie MeSH
- ROC křivka MeSH
- senioři MeSH
- strojové učení * MeSH
- ultrasonografie * metody MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
The Arteriovenous Access Stage (AVAS) classification simplifies information about suitability of vessels for vascular access (VA). It's been previously validated in a clinical study. Here, AVAS performance was tested against multiple ultrasound mapping measurements using machine learning. A prospective multicentre international study (NCT04796558) with patient recruitment from March 2021-July 2024. Demographics, risk factors, vessels parameters, types of predicted and created VA (pVA, cVA) were collected. We modelled pVA and cVA using the Random Forest algorithm. Model performance was estimated and compared using Bayesian generalized linear models. ROC AUC with 95% credible intervals was the performance metric. 1151 patients were included. ROC AUC for pVA prediction by AVAS was 0.79 (0.77;0.82) and by mapping was 0.85 (0.83;0.88). ROC AUC for cVA prediction by AVAS was 0.71 (0.69;0.74) and by mapping was 0.8 (0.78;0.83). Using AVAS with other parameters increased the ROC AUC to 0.87 for pVA (0.84;0.89) and 0.82 (0.79;0.84) for cVA. Using mapping with other parameters increased the ROC AUC to 0.88 for pVA (0.86;0.91) and 0.85 (0.83;0.88) for cVA. Multiple mapping measurements showed higher performance at VA prediction than AVAS. However, AVAS is simpler and quicker, so may be preferable for routine clinical practice.
3rd Faculty of Medicine Charles University Prague Czech Republic
AdNa s r o Vascular Surgery Clinic Košice Slovak Republic
Centre for Medical Education Queen's University Belfast Belfast UK
Centre for Vascular and Mini invasive Surgery Hospital AGEL Třinec Podlesí Czech Republic
Department of General Surgery Hospital Professor Doutor Fernando Fonseca Amadora Portugal
Department of Nephrology and Transplantation Medicine Wroclaw Medical University Wroclaw Poland
Department of Physiology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Renal Surgery Queen Elizabeth University Hospital Glasgow UK
Department of Transplant Surgery and Regional Nephrology Unit Belfast City Hospital Belfast UK
Division of Vascular Surgery University Hospital Královské Vinohrady Prague Czech Republic
Faculty of Electrical Engineering Czech Technical University Prague Prague Czech Republic
RL Vascular Surgery and Interventional Radiology Private Practice Salvador Brazil
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25010223
- 003
- CZ-PrNML
- 005
- 20250429135323.0
- 007
- ta
- 008
- 250415s2025 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-025-86456-3 $2 doi
- 035 __
- $a (PubMed)39833325
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Lawrie, Katerina $u Department of Transplantation Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic $u Third Faculty of Medicine, Charles University, Prague, Czech Republic
- 245 10
- $a Machine learning validation of the AVAS classification compared to ultrasound mapping in a multicentre study / $c K. Lawrie, P. Waldauf, P. Balaz, R. Bortel, R. Lacerda, E. Aitken, K. Letachowicz, M. D'Oria, V. Di Maso, P. Stasko, A. Gomes, J. Fontainhas, M. Pekar, A. Srdelic, VAVASC Study Group, S. O'Neill
- 520 9_
- $a The Arteriovenous Access Stage (AVAS) classification simplifies information about suitability of vessels for vascular access (VA). It's been previously validated in a clinical study. Here, AVAS performance was tested against multiple ultrasound mapping measurements using machine learning. A prospective multicentre international study (NCT04796558) with patient recruitment from March 2021-July 2024. Demographics, risk factors, vessels parameters, types of predicted and created VA (pVA, cVA) were collected. We modelled pVA and cVA using the Random Forest algorithm. Model performance was estimated and compared using Bayesian generalized linear models. ROC AUC with 95% credible intervals was the performance metric. 1151 patients were included. ROC AUC for pVA prediction by AVAS was 0.79 (0.77;0.82) and by mapping was 0.85 (0.83;0.88). ROC AUC for cVA prediction by AVAS was 0.71 (0.69;0.74) and by mapping was 0.8 (0.78;0.83). Using AVAS with other parameters increased the ROC AUC to 0.87 for pVA (0.84;0.89) and 0.82 (0.79;0.84) for cVA. Using mapping with other parameters increased the ROC AUC to 0.88 for pVA (0.86;0.91) and 0.85 (0.83;0.88) for cVA. Multiple mapping measurements showed higher performance at VA prediction than AVAS. However, AVAS is simpler and quicker, so may be preferable for routine clinical practice.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 12
- $a strojové učení $7 D000069550
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a prospektivní studie $7 D011446
- 650 12
- $a ultrasonografie $x metody $7 D014463
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a arteriovenózní zkrat $7 D001166
- 650 _2
- $a ROC křivka $7 D012372
- 650 _2
- $a Bayesova věta $7 D001499
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a multicentrická studie $7 D016448
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Waldauf, Petr $u Third Faculty of Medicine, Charles University, Prague, Czech Republic. petr.waldauf@fnkv.cz $u Department of Anaesthesiology and Resuscitation, University Hospital Královské Vinohrady, Prague, Czech Republic. petr.waldauf@fnkv.cz
- 700 1_
- $a Balaz, Peter $u Third Faculty of Medicine, Charles University, Prague, Czech Republic $u Division of Vascular Surgery, University Hospital Královské Vinohrady, Prague, Czech Republic $u Cardiocenter, Third Faculty of Medicine, University Hospital Královské Vinohrady, Charles University, Prague, Czech Republic $u Department of Vascular Surgery, National Institute for Cardiovascular Disease, Bratislava, Slovak Republic
- 700 1_
- $a Bortel, Radoslav $u Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- 700 1_
- $a Lacerda, Ricardo $u RL Vascular Surgery and Interventional Radiology, Private Practice, Salvador, Brazil
- 700 1_
- $a Aitken, Emma $u Department of Renal Surgery, Queen Elizabeth University Hospital, Glasgow, UK
- 700 1_
- $a Letachowicz, Krzysztof $u Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
- 700 1_
- $a D'Oria, Mario $u Division of Vascular and Endovascular Surgery, Cardio-Thoracic-Vascular Department, University Hospital of Trieste, Trieste, Italy
- 700 1_
- $a Di Maso, Vittorio $u Nephrology and Dialysis Unit, Department of Medicine, ASUGI - University Hospital of Trieste, Trieste, Italy
- 700 1_
- $a Stasko, Pavel $u AdNa s.r.o., Vascular Surgery Clinic, Košice, Slovak Republic
- 700 1_
- $a Gomes, Antonio $u Department of General Surgery, Hospital Professor Doutor Fernando Fonseca, Amadora, Portugal
- 700 1_
- $a Fontainhas, Joana $u Department of General Surgery, Hospital Professor Doutor Fernando Fonseca, Amadora, Portugal
- 700 1_
- $a Pekar, Matej $u Centre for Vascular and Mini-invasive Surgery, Hospital AGEL, Třinec-Podlesí, Czech Republic $u Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Srdelic, Alena $u Division of Nephrology and Haemodialysis, Internal Medicine Department, University Hospital of Split, Split, Croatia
- 700 1_
- $a O'Neill, Stephen $u Centre for Medical Education, Queen's University Belfast, Belfast, UK $u Department of Transplant Surgery and Regional Nephrology Unit, Belfast City Hospital, Belfast, UK
- 710 2_
- $a VAVASC Study Group
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 15, č. 1 (2025), s. 2538
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39833325 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250415 $b ABA008
- 991 __
- $a 20250429135318 $b ABA008
- 999 __
- $a ok $b bmc $g 2311535 $s 1247304
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 15 $c 1 $d 2538 $e 20250120 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20250415