• Je něco špatně v tomto záznamu ?

Gadolinium oxide nanoparticles as a multimodal contrast enhancement agent for pre-clinical proton imaging

M. Würl, G. Liubchenko, G. Hu, K. Schnürle, S. Meyer, J. Bortfeldt, G. Landry, L. Käsmann, K. Lauber, C. Granja, C. Oancea, E. Verroi, F. Tommassino, K. Parodi

. 2025 ; 70 (2) : . [pub] 20250117

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25010241

Orthotopic tumor models in pre-clinical translational research are becoming increasingly popular, raising the demands on accurate tumor localization prior to irradiation. This task remains challenging both in x-ray and proton computed tomography (xCT and pCT, respectively), due to the limited contrast of tumor tissue compared to the surrounding tissue. We investigate the feasibility of gadolinium oxide nanoparticles as a multimodal contrast enhancement agent for both imaging modalities. We performed proton radiographies at the experimental room of the Trento Proton Therapy Center using a MiniPIX-Timepix detector and dispersions of gadolinium oxide nanoparticles in sunflower oil with mass fractions up to 8wt%. To determine the minimum nanoparticle concentration required for the detectability of small structures, pCT images of a cylindrical water phantom with cavities of varying gadolinium oxide concentration were simulated using a dedicated FLUKA Monte Carlo framework. These findings are complemented by simulating pCT at dose levels from 80 mGy to 320 mGy of artificially modified murine xCT data, mimicking different levels of gadolinium oxide accumulation inside a fictitious tumor volume. To compare the results obtained for proton imaging to x-ray imaging, cone-beam CT images of a cylindrical PMMA phantom with cavities of dispersions of oil and gadolinium oxide nanoparticles with mass fractions up to 8wt% were acquired at a commercial pre-clinical irradiation setup. For proton radiography, considerable contrast enhancement was found for a mass fraction of 4wt%. Slightly lower values were found for the simulated pCT images at imaging doses below 200 mGy. In contrast, full detectability of small gadolinium oxide loaded structures in xCT at comparable imaging dose is already achieved for 0.5wt%. Achieving such concentrations required for pCT imaging inside a tumor volume inin-vivoexperiments may be challenging, yet it might be feasible using different targeting and/or injection strategies.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25010241
003      
CZ-PrNML
005      
20250429134814.0
007      
ta
008      
250415s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1361-6560/ada5a4 $2 doi
035    __
$a (PubMed)39752881
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Würl, Matthias $u Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching b. München, Germany $1 https://orcid.org/000000033044449X
245    10
$a Gadolinium oxide nanoparticles as a multimodal contrast enhancement agent for pre-clinical proton imaging / $c M. Würl, G. Liubchenko, G. Hu, K. Schnürle, S. Meyer, J. Bortfeldt, G. Landry, L. Käsmann, K. Lauber, C. Granja, C. Oancea, E. Verroi, F. Tommassino, K. Parodi
520    9_
$a Orthotopic tumor models in pre-clinical translational research are becoming increasingly popular, raising the demands on accurate tumor localization prior to irradiation. This task remains challenging both in x-ray and proton computed tomography (xCT and pCT, respectively), due to the limited contrast of tumor tissue compared to the surrounding tissue. We investigate the feasibility of gadolinium oxide nanoparticles as a multimodal contrast enhancement agent for both imaging modalities. We performed proton radiographies at the experimental room of the Trento Proton Therapy Center using a MiniPIX-Timepix detector and dispersions of gadolinium oxide nanoparticles in sunflower oil with mass fractions up to 8wt%. To determine the minimum nanoparticle concentration required for the detectability of small structures, pCT images of a cylindrical water phantom with cavities of varying gadolinium oxide concentration were simulated using a dedicated FLUKA Monte Carlo framework. These findings are complemented by simulating pCT at dose levels from 80 mGy to 320 mGy of artificially modified murine xCT data, mimicking different levels of gadolinium oxide accumulation inside a fictitious tumor volume. To compare the results obtained for proton imaging to x-ray imaging, cone-beam CT images of a cylindrical PMMA phantom with cavities of dispersions of oil and gadolinium oxide nanoparticles with mass fractions up to 8wt% were acquired at a commercial pre-clinical irradiation setup. For proton radiography, considerable contrast enhancement was found for a mass fraction of 4wt%. Slightly lower values were found for the simulated pCT images at imaging doses below 200 mGy. In contrast, full detectability of small gadolinium oxide loaded structures in xCT at comparable imaging dose is already achieved for 0.5wt%. Achieving such concentrations required for pCT imaging inside a tumor volume inin-vivoexperiments may be challenging, yet it might be feasible using different targeting and/or injection strategies.
650    12
$a gadolinium $x chemie $7 D005682
650    12
$a kontrastní látky $x chemie $7 D003287
650    12
$a nanočástice $x chemie $7 D053758
650    _2
$a zvířata $7 D000818
650    12
$a protony $7 D011522
650    12
$a fantomy radiodiagnostické $7 D019047
650    _2
$a myši $7 D051379
650    _2
$a počítačová rentgenová tomografie $7 D014057
655    _2
$a časopisecké články $7 D016428
700    1_
$a Liubchenko, Grigory $u Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching b. München, Germany
700    1_
$a Hu, Guyue $u Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching b. München, Germany $1 https://orcid.org/0009000408217236
700    1_
$a Schnürle, Katrin $u Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching b. München, Germany
700    1_
$a Meyer, Sebastian $u Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching b. München, Germany $1 https://orcid.org/0000000225107045
700    1_
$a Bortfeldt, Jonathan $u Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching b. München, Germany $1 https://orcid.org/000000020777985X
700    1_
$a Landry, Guillaume $u Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching b. München, Germany $u Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany $1 https://orcid.org/0000000317074068
700    1_
$a Käsmann, Lukas $u Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
700    1_
$a Lauber, Kirsten $u Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
700    1_
$a Granja, Carlos $u ADVACAM s.r.o, Prague, Czech Republic $1 https://orcid.org/0000000243981553
700    1_
$a Oancea, Cristina $u ADVACAM s.r.o, Prague, Czech Republic $1 https://orcid.org/0000000217459702
700    1_
$a Verroi, Enrico $u INFN TIFPA, Trento, Italy
700    1_
$a Tommassino, Francesco $u INFN TIFPA, Trento, Italy $u University of Trento, Trento, Italy $1 https://orcid.org/0000000286849261
700    1_
$a Parodi, Katia $u Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching b. München, Germany $1 https://orcid.org/0000000177796690
773    0_
$w MED00003821 $t Physics in medicine and biology $x 1361-6560 $g Roč. 70, č. 2 (2025)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39752881 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429134810 $b ABA008
999    __
$a ok $b bmc $g 2311545 $s 1247322
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 70 $c 2 $e 20250117 $i 1361-6560 $m Physics in medicine and biology $n Phys Med Biol $x MED00003821
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...