-
Je něco špatně v tomto záznamu ?
Quantitative pre-clinical imaging of hypoxia and vascularity using MRI and PET
G. Kanli, S. Boudissa, R. Jirik, T. Adamsen, H. Espedal, HO. Rolfsnes, F. Thorsen, J. Pacheco-Torres, B. Janji, O. Keunen
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
- MeSH
- hypoxie diagnostické zobrazování MeSH
- kyslík metabolismus MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- misonidazol analogy a deriváty MeSH
- myši MeSH
- nádorová hypoxie MeSH
- nádory diagnostické zobrazování krevní zásobení patologie MeSH
- patologická angiogeneze diagnostické zobrazování patologie MeSH
- pozitronová emisní tomografie * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
During hypoxia, tissues are subjected to an inadequate oxygen supply, disrupting the balance needed to maintain normal function. This deficiency can occur due to reduced oxygen delivery caused by impaired blood flow or a decline in the blood's ability to carry oxygen. In tumors, hypoxia and vascularization play crucial roles, shaping their microenvironments and influencing cancer progression, response to treatment and metastatic potential. This chapter provides guidance on the use of non-invasive imaging methods including Positron Emission Tomography and Magnetic Resonance Imaging to study tumor oxygenation in pre-clinical settings. These imaging techniques offer valuable insights into tumor vascularity and oxygen levels, aiding in understanding tumor behavior and treatment effects. For example, PET imaging uses tracers such as [18F]-fluoromisonidazole (FMISO) to visualize hypoxic areas within tumors, while MRI complements this with anatomical and functional images. Although directly assessing tumor hypoxia with MRI remains challenging, techniques like Blood Oxygen Level Dependent (BOLD) and Dynamic Contrast-Enhanced MRI (DCE-MRI) provide valuable information. BOLD can track changes in oxygen levels during oxygen challenges, while DCE-MRI offers real-time access to perfusion and vessel permeability data. Integrating data from these imaging modalities can help assess oxygen supply, refine treatment strategies, enhance therapeutic effectiveness, and ultimately improve patient outcomes.
Centre for Nuclear Medicine Department of Radiology Haukeland University Hospital Bergen Norway
Department of Neurosurgery Haukeland University Hospital Bergen Norway
In Vivo Imaging Platform Luxembourg Institute of Health Luxembourg City Luxembourg
Institute of Scientific Instruments of the Czech Academy of Sciences Brno Czech Republic
Molecular Imaging Center Department of Biomedicine University of Bergen Norway
Translational Radiomics Luxembourg Institute of Health Luxembourg City Luxembourg
Western Australia National Imaging Facility The University of Western Australia Perth Australia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25010393
- 003
- CZ-PrNML
- 005
- 20250429135438.0
- 007
- ta
- 008
- 250415e20241119xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/bs.mcb.2024.10.016 $2 doi
- 035 __
- $a (PubMed)39824561
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kanli, Georgia $u Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
- 245 10
- $a Quantitative pre-clinical imaging of hypoxia and vascularity using MRI and PET / $c G. Kanli, S. Boudissa, R. Jirik, T. Adamsen, H. Espedal, HO. Rolfsnes, F. Thorsen, J. Pacheco-Torres, B. Janji, O. Keunen
- 520 9_
- $a During hypoxia, tissues are subjected to an inadequate oxygen supply, disrupting the balance needed to maintain normal function. This deficiency can occur due to reduced oxygen delivery caused by impaired blood flow or a decline in the blood's ability to carry oxygen. In tumors, hypoxia and vascularization play crucial roles, shaping their microenvironments and influencing cancer progression, response to treatment and metastatic potential. This chapter provides guidance on the use of non-invasive imaging methods including Positron Emission Tomography and Magnetic Resonance Imaging to study tumor oxygenation in pre-clinical settings. These imaging techniques offer valuable insights into tumor vascularity and oxygen levels, aiding in understanding tumor behavior and treatment effects. For example, PET imaging uses tracers such as [18F]-fluoromisonidazole (FMISO) to visualize hypoxic areas within tumors, while MRI complements this with anatomical and functional images. Although directly assessing tumor hypoxia with MRI remains challenging, techniques like Blood Oxygen Level Dependent (BOLD) and Dynamic Contrast-Enhanced MRI (DCE-MRI) provide valuable information. BOLD can track changes in oxygen levels during oxygen challenges, while DCE-MRI offers real-time access to perfusion and vessel permeability data. Integrating data from these imaging modalities can help assess oxygen supply, refine treatment strategies, enhance therapeutic effectiveness, and ultimately improve patient outcomes.
- 650 12
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 12
- $a pozitronová emisní tomografie $x metody $7 D049268
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a patologická angiogeneze $x diagnostické zobrazování $x patologie $7 D009389
- 650 _2
- $a kyslík $x metabolismus $7 D010100
- 650 _2
- $a nádory $x diagnostické zobrazování $x krevní zásobení $x patologie $7 D009369
- 650 _2
- $a nádorová hypoxie $7 D000072258
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a hypoxie $x diagnostické zobrazování $7 D000860
- 650 _2
- $a misonidazol $x analogy a deriváty $7 D008920
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Boudissa, Selma $u Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg
- 700 1_
- $a Jirik, Radovan $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
- 700 1_
- $a Adamsen, Tom $u Centre for Nuclear Medicine, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
- 700 1_
- $a Espedal, Heidi $u Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway; Western Australia National Imaging Facility, The University of Western Australia, Perth, Australia
- 700 1_
- $a Rolfsnes, Hans Olav $u Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
- 700 1_
- $a Thorsen, Frits $u Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway; Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway; Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, China
- 700 1_
- $a Pacheco-Torres, Jesus $u Institute for Biomedical Research Sols-Morreale (IIBM), Spanish National Research Council-Universidad Autónoma de Madrid, Madrid, Spain
- 700 1_
- $a Janji, Bassam $u Tumor Immunotherapy and Microenvironment Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg. Electronic address: bassam.janji@lih.lu
- 700 1_
- $a Keunen, Olivier $u Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg
- 773 0_
- $w MED00192812 $t Methods in cell biology $x 0091-679X $g Roč. 191 (20241119), s. 289-328
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39824561 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250415 $b ABA008
- 991 __
- $a 20250429135433 $b ABA008
- 999 __
- $a ok $b bmc $g 2311633 $s 1247474
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 191 $c - $d 289-328 $e 20241119 $i 0091-679X $m Methods in cell biology $n Methods Cell Biol $x MED00192812
- LZP __
- $a Pubmed-20250415