• Je něco špatně v tomto záznamu ?

Quantitative pre-clinical imaging of hypoxia and vascularity using MRI and PET

G. Kanli, S. Boudissa, R. Jirik, T. Adamsen, H. Espedal, HO. Rolfsnes, F. Thorsen, J. Pacheco-Torres, B. Janji, O. Keunen

. 2025 ; 191 (-) : 289-328. [pub] 20241119

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25010393

During hypoxia, tissues are subjected to an inadequate oxygen supply, disrupting the balance needed to maintain normal function. This deficiency can occur due to reduced oxygen delivery caused by impaired blood flow or a decline in the blood's ability to carry oxygen. In tumors, hypoxia and vascularization play crucial roles, shaping their microenvironments and influencing cancer progression, response to treatment and metastatic potential. This chapter provides guidance on the use of non-invasive imaging methods including Positron Emission Tomography and Magnetic Resonance Imaging to study tumor oxygenation in pre-clinical settings. These imaging techniques offer valuable insights into tumor vascularity and oxygen levels, aiding in understanding tumor behavior and treatment effects. For example, PET imaging uses tracers such as [18F]-fluoromisonidazole (FMISO) to visualize hypoxic areas within tumors, while MRI complements this with anatomical and functional images. Although directly assessing tumor hypoxia with MRI remains challenging, techniques like Blood Oxygen Level Dependent (BOLD) and Dynamic Contrast-Enhanced MRI (DCE-MRI) provide valuable information. BOLD can track changes in oxygen levels during oxygen challenges, while DCE-MRI offers real-time access to perfusion and vessel permeability data. Integrating data from these imaging modalities can help assess oxygen supply, refine treatment strategies, enhance therapeutic effectiveness, and ultimately improve patient outcomes.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25010393
003      
CZ-PrNML
005      
20250429135438.0
007      
ta
008      
250415e20241119xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/bs.mcb.2024.10.016 $2 doi
035    __
$a (PubMed)39824561
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kanli, Georgia $u Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
245    10
$a Quantitative pre-clinical imaging of hypoxia and vascularity using MRI and PET / $c G. Kanli, S. Boudissa, R. Jirik, T. Adamsen, H. Espedal, HO. Rolfsnes, F. Thorsen, J. Pacheco-Torres, B. Janji, O. Keunen
520    9_
$a During hypoxia, tissues are subjected to an inadequate oxygen supply, disrupting the balance needed to maintain normal function. This deficiency can occur due to reduced oxygen delivery caused by impaired blood flow or a decline in the blood's ability to carry oxygen. In tumors, hypoxia and vascularization play crucial roles, shaping their microenvironments and influencing cancer progression, response to treatment and metastatic potential. This chapter provides guidance on the use of non-invasive imaging methods including Positron Emission Tomography and Magnetic Resonance Imaging to study tumor oxygenation in pre-clinical settings. These imaging techniques offer valuable insights into tumor vascularity and oxygen levels, aiding in understanding tumor behavior and treatment effects. For example, PET imaging uses tracers such as [18F]-fluoromisonidazole (FMISO) to visualize hypoxic areas within tumors, while MRI complements this with anatomical and functional images. Although directly assessing tumor hypoxia with MRI remains challenging, techniques like Blood Oxygen Level Dependent (BOLD) and Dynamic Contrast-Enhanced MRI (DCE-MRI) provide valuable information. BOLD can track changes in oxygen levels during oxygen challenges, while DCE-MRI offers real-time access to perfusion and vessel permeability data. Integrating data from these imaging modalities can help assess oxygen supply, refine treatment strategies, enhance therapeutic effectiveness, and ultimately improve patient outcomes.
650    12
$a magnetická rezonanční tomografie $x metody $7 D008279
650    12
$a pozitronová emisní tomografie $x metody $7 D049268
650    _2
$a zvířata $7 D000818
650    _2
$a lidé $7 D006801
650    _2
$a patologická angiogeneze $x diagnostické zobrazování $x patologie $7 D009389
650    _2
$a kyslík $x metabolismus $7 D010100
650    _2
$a nádory $x diagnostické zobrazování $x krevní zásobení $x patologie $7 D009369
650    _2
$a nádorová hypoxie $7 D000072258
650    _2
$a myši $7 D051379
650    _2
$a hypoxie $x diagnostické zobrazování $7 D000860
650    _2
$a misonidazol $x analogy a deriváty $7 D008920
655    _2
$a časopisecké články $7 D016428
700    1_
$a Boudissa, Selma $u Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg
700    1_
$a Jirik, Radovan $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
700    1_
$a Adamsen, Tom $u Centre for Nuclear Medicine, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
700    1_
$a Espedal, Heidi $u Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway; Western Australia National Imaging Facility, The University of Western Australia, Perth, Australia
700    1_
$a Rolfsnes, Hans Olav $u Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
700    1_
$a Thorsen, Frits $u Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway; Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway; Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, China
700    1_
$a Pacheco-Torres, Jesus $u Institute for Biomedical Research Sols-Morreale (IIBM), Spanish National Research Council-Universidad Autónoma de Madrid, Madrid, Spain
700    1_
$a Janji, Bassam $u Tumor Immunotherapy and Microenvironment Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg. Electronic address: bassam.janji@lih.lu
700    1_
$a Keunen, Olivier $u Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg
773    0_
$w MED00192812 $t Methods in cell biology $x 0091-679X $g Roč. 191 (20241119), s. 289-328
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39824561 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429135433 $b ABA008
999    __
$a ok $b bmc $g 2311633 $s 1247474
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 191 $c - $d 289-328 $e 20241119 $i 0091-679X $m Methods in cell biology $n Methods Cell Biol $x MED00192812
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...