-
Something wrong with this record ?
Development of point-of-need colourimetric, isothermal diagnostic assays for specific detection of Bacillus subtilis using shikimate dehydrogenase gene
N. S, M. C, SK. T, RR. S, K. A, PM. K, P. D, SS. N
Language English Country Czech Republic
Document type Journal Article
- MeSH
- Alcohol Oxidoreductases * genetics MeSH
- Bacillus subtilis * genetics isolation & purification enzymology MeSH
- Bacterial Proteins genetics MeSH
- Molecular Diagnostic Techniques * methods MeSH
- Colorimetry * methods MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Soil Microbiology MeSH
- Sensitivity and Specificity MeSH
- Nucleic Acid Amplification Techniques * methods MeSH
- Publication type
- Journal Article MeSH
The largest obstacle in the promotion of biopesticides is the existence of counterfeit products available in the market. Identification and quantification of antagonistic organisms in biopesticide products are the key to the reduction of spurious microbial pesticides. In this study, we have developed a simple, sensitive, isothermal-based colourimetric assay for specific detection of Bacillus subtilis from the biopesticide formulations and soil samples. A region specific to B. subtilis which codes for shikimate dehydrogenase was identified through in silico analysis. We employed conventional PCR, loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and qPCR for specific detection of B. subtilis in soil samples and biopesticide formulations. Specificity tests showed that the PCR primers amplified an amplicon of 521 bp in four strains of B. subtilis only, and no amplification was found in negative control samples. Similarly, the LAMP assay showed sky blue colour in all four strains of B. subtilis and violet colour in negative control samples. Whereas in the RPA assay, upon the addition of SYBR Green dye, a bright green colour was seen in B. subtilis strains, while a brick-red colour was observed in negative control samples by visualizing under a UV transilluminator. The qPCR assay showed specific amplifications with a Ct value of 12 for B. subtilis strains and no amplification in negative control samples. In the sensitivity test, PCR could amplify DNA of B. subtilis up to 500 pg/μL. DNA concentration as low as 10 pg/μL was enough to show the colour change in the LAMP as well as the RPA assays, whereas the qPCR assay showed sensitivity till 100 pg/μL. All four diagnostic assays developed in the study have been validated in soil samples and B. subtilis-based biopesticides. Compared to conventional PCR, the qPCR assay has the advantage of quantification and visualizing the result in real-time, whereas LAMP and RPA assays have the benefits of being colourimetric and less time-consuming. The other advantages are that the results can be visualized with the naked eye, and these assays do not require a costly thermal cycler and gel documentation system. Hence, LAMP and RPA assays are highly suitable for developing point-of-need diagnostic kits and, in turn, help regulators assess the quality of biopesticides in the market.
Agricultural Research Station Gangavathi University of Agricultural Sciences Raichur 583 227 India
Department of Biotechnology Jain University Bengaluru 560 027 India
Department of Plant Pathology University of Agricultural Sciences Bengaluru 560 065 India
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25013011
- 003
- CZ-PrNML
- 005
- 20250605092907.0
- 007
- ta
- 008
- 250605s2025 xr f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s12223-024-01201-z $2 doi
- 035 __
- $a (PubMed)39331280
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a S, Nanditha $u Department of Biotechnology, Jain University, Bengaluru, 560 027, India $u Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
- 245 10
- $a Development of point-of-need colourimetric, isothermal diagnostic assays for specific detection of Bacillus subtilis using shikimate dehydrogenase gene / $c N. S, M. C, SK. T, RR. S, K. A, PM. K, P. D, SS. N
- 520 9_
- $a The largest obstacle in the promotion of biopesticides is the existence of counterfeit products available in the market. Identification and quantification of antagonistic organisms in biopesticide products are the key to the reduction of spurious microbial pesticides. In this study, we have developed a simple, sensitive, isothermal-based colourimetric assay for specific detection of Bacillus subtilis from the biopesticide formulations and soil samples. A region specific to B. subtilis which codes for shikimate dehydrogenase was identified through in silico analysis. We employed conventional PCR, loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and qPCR for specific detection of B. subtilis in soil samples and biopesticide formulations. Specificity tests showed that the PCR primers amplified an amplicon of 521 bp in four strains of B. subtilis only, and no amplification was found in negative control samples. Similarly, the LAMP assay showed sky blue colour in all four strains of B. subtilis and violet colour in negative control samples. Whereas in the RPA assay, upon the addition of SYBR Green dye, a bright green colour was seen in B. subtilis strains, while a brick-red colour was observed in negative control samples by visualizing under a UV transilluminator. The qPCR assay showed specific amplifications with a Ct value of 12 for B. subtilis strains and no amplification in negative control samples. In the sensitivity test, PCR could amplify DNA of B. subtilis up to 500 pg/μL. DNA concentration as low as 10 pg/μL was enough to show the colour change in the LAMP as well as the RPA assays, whereas the qPCR assay showed sensitivity till 100 pg/μL. All four diagnostic assays developed in the study have been validated in soil samples and B. subtilis-based biopesticides. Compared to conventional PCR, the qPCR assay has the advantage of quantification and visualizing the result in real-time, whereas LAMP and RPA assays have the benefits of being colourimetric and less time-consuming. The other advantages are that the results can be visualized with the naked eye, and these assays do not require a costly thermal cycler and gel documentation system. Hence, LAMP and RPA assays are highly suitable for developing point-of-need diagnostic kits and, in turn, help regulators assess the quality of biopesticides in the market.
- 650 12
- $a Bacillus subtilis $x genetika $x izolace a purifikace $x enzymologie $7 D001412
- 650 12
- $a techniky amplifikace nukleových kyselin $x metody $7 D021141
- 650 12
- $a kolorimetrie $x metody $7 D003124
- 650 12
- $a alkoholoxidoreduktasy $x genetika $7 D000429
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 12
- $a diagnostické techniky molekulární $x metody $7 D025202
- 650 _2
- $a půdní mikrobiologie $7 D012988
- 650 _2
- $a bakteriální proteiny $x genetika $7 D001426
- 650 _2
- $a kvantitativní polymerázová řetězová reakce $7 D060888
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a C, Manjunatha $u Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India. manjunatha.c@icar.gov.in $1 https://orcid.org/0000000228128503
- 700 1_
- $a T, Shivakumara K $u Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
- 700 1_
- $a S, Ramya R $u Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
- 700 1_
- $a A, Kandan $u Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
- 700 1_
- $a K, Prasannakumar M $u Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, 560 065, India
- 700 1_
- $a D, Pramesh $u Agricultural Research Station, Gangavathi, University of Agricultural Sciences, Raichur, 583 227, India
- 700 1_
- $a N, Sushil S $u Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
- 773 0_
- $w MED00011005 $t Folia microbiologica $x 1874-9356 $g Roč. 70, č. 2 (2025), s. 463-473
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39331280 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250605 $b ABA008
- 991 __
- $a 20250605092901 $b ABA008
- 999 __
- $a ok $b bmc $g 2333588 $s 1250121
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 70 $c 2 $d 463-473 $e 20240927 $i 1874-9356 $m Folia microbiologica $n Folia Microbiol (Praha) $x MED00011005
- LZP __
- $a Pubmed-20250605