Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Artificial intelligence in pancreatic cancer histopathology and diagnostics - implications for clinical decisions and biomarker discovery

P. Weselá, M. Eid, P. Moravčík, J. Vlažný, J. Hlavsa, V. Procházka, Z. Kala, P. Vaňhara

. 2025 ; 20 (1) : 15. [pub] 20250617

Status not-indexed Language English Country England, Great Britain

Document type Journal Article, Review

Grant support
MUNI/A/1738/2024 Masaryk University
MUNI/A/1558/2023 Masaryk University
MUNI/A/1558/2023 Masaryk University
MUNI/A/1738/2024 Masaryk University
NU23-08-00241 Czech Health Research Council
NU23-08-00241 Czech Health Research Council
NU23-08-00241 Czech Health Research Council
NU23-08-00241 Czech Health Research Council
NU23-08-00241 Czech Health Research Council
NU23-08-00241 Czech Health Research Council
NU23-08-00241 Czech Health Research Council

Artificial intelligence (AI) and machine learning (ML) are rapidly advancing fields within computer science, driving significant progress in cancer diagnostics. Various ML models have been developed to assist diagnosis, guide therapy decisions, and facilitate early disease detection. In this review, we discuss diverse AI and ML approaches and critically evaluate their applications and limitations in pancreatic cancer histopathology, diagnostics, and biomarker discovery.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25014154
003      
CZ-PrNML
005      
20250905141321.0
007      
ta
008      
250701s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s13008-025-00158-w $2 doi
035    __
$a (PubMed)40528234
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Weselá, Petra $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 625 00, Czech Republic $u Department of Biostatistics, St. Anne's University Hospital Brno, Brno, Czech Republic
245    10
$a Artificial intelligence in pancreatic cancer histopathology and diagnostics - implications for clinical decisions and biomarker discovery / $c P. Weselá, M. Eid, P. Moravčík, J. Vlažný, J. Hlavsa, V. Procházka, Z. Kala, P. Vaňhara
520    9_
$a Artificial intelligence (AI) and machine learning (ML) are rapidly advancing fields within computer science, driving significant progress in cancer diagnostics. Various ML models have been developed to assist diagnosis, guide therapy decisions, and facilitate early disease detection. In this review, we discuss diverse AI and ML approaches and critically evaluate their applications and limitations in pancreatic cancer histopathology, diagnostics, and biomarker discovery.
590    __
$a NEINDEXOVÁNO
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Eid, Michal $u Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic $u Center for Precision Medicine, University Hospital Brno, Brno, Czech Republic
700    1_
$a Moravčík, Petr $u Surgery Clinic, University Hospital Brno, Brno, Czech Republic
700    1_
$a Vlažný, Jakub $u Center for Precision Medicine, University Hospital Brno, Brno, Czech Republic $u Department of Pathology, University Hospital Brno, Brno, Czech Republic
700    1_
$a Hlavsa, Jan $u Surgery Clinic, University Hospital Brno, Brno, Czech Republic
700    1_
$a Procházka, Vladimír $u Surgery Clinic, University Hospital Brno, Brno, Czech Republic
700    1_
$a Kala, Zdeněk $u Surgery Clinic, University Hospital Brno, Brno, Czech Republic
700    1_
$a Vaňhara, Petr $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 625 00, Czech Republic. pvanhara@med.muni.cz $u International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic. pvanhara@med.muni.cz
773    0_
$w MED00173234 $t Cell division $x 1747-1028 $g Roč. 20, č. 1 (2025), s. 15
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40528234 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250701 $b ABA008
991    __
$a 20250905141309 $b ABA008
999    __
$a ok $b bmc $g 2387981 $s 1251274
BAS    __
$a 3
BAS    __
$a PreBMC-PubMed-not-MEDLINE
BMC    __
$a 2025 $b 20 $c 1 $d 15 $e 20250617 $i 1747-1028 $m Cell division $n Cell Div $x MED00173234
GRA    __
$a MUNI/A/1738/2024 $p Masaryk University
GRA    __
$a MUNI/A/1558/2023 $p Masaryk University
GRA    __
$a MUNI/A/1558/2023 $p Masaryk University
GRA    __
$a MUNI/A/1738/2024 $p Masaryk University
GRA    __
$a NU23-08-00241 $p Czech Health Research Council
GRA    __
$a NU23-08-00241 $p Czech Health Research Council
GRA    __
$a NU23-08-00241 $p Czech Health Research Council
GRA    __
$a NU23-08-00241 $p Czech Health Research Council
GRA    __
$a NU23-08-00241 $p Czech Health Research Council
GRA    __
$a NU23-08-00241 $p Czech Health Research Council
GRA    __
$a NU23-08-00241 $p Czech Health Research Council
LZP    __
$a Pubmed-20250701

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...