-
Je něco špatně v tomto záznamu ?
Use of machine learning techniques to predict poor survival after hematopoietic cell transplantation for myelofibrosis
JC. Hernández-Boluda, A. Mosquera-Orgueira, L. Gras, L. Koster, J. Tuffnell, N. Kröger, M. Gambella, T. Schroeder, M. Robin, K. Sockel, J. Passweg, IW. Blau, I. Yakoub-Agha, R. Van Dijck, M. Stelljes, H. Sengeloev, J. Vydra, U. Platzbecker, M. de...
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Open Access Digital Library
od 1946-01-01
Open Access Digital Library
od 1946-01-01
ROAD: Directory of Open Access Scholarly Resources
PubMed
40145857
DOI
10.1182/blood.2024027287
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- míra přežití MeSH
- primární myelofibróza * terapie mortalita MeSH
- prognóza MeSH
- senioři MeSH
- strojové učení * MeSH
- transplantace hematopoetických kmenových buněk * mortalita MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
With the incorporation of effective therapies for myelofibrosis (MF), accurately predicting outcomes after allogeneic hematopoietic cell transplantation (allo-HCT) is crucial for determining the optimal timing for this procedure. Using data from 5183 patients with MF who underwent first allo-HCT between 2005 and 2020 at European Society for Blood and Marrow Transplantation centers, we examined different machine learning (ML) models to predict overall survival after transplant. The cohort was divided into a training set (75%) and a test set (25%) for model validation. A random survival forests (RSF) model was developed based on 10 variables: patient age, comorbidity index, performance status, blood blasts, hemoglobin, leukocytes, platelets, donor type, conditioning intensity, and graft-versus-host disease prophylaxis. Its performance was compared with a 4-level Cox regression-based score and other ML-based models derived from the same data set, and with the Center for International Blood and Marrow Transplant Research score. The RSF outperformed all comparators, achieving better concordance indices across both primary and postessential thrombocythemia/polycythemia vera MF subgroups. The robustness and generalizability of the RSF model was confirmed by Akaike information criterion and time-dependent receiver operating characteristic area under the curve metrics in both sets. Although all models were prognostic for nonrelapse mortality, the RSF provided better curve separation, effectively identifying a high-risk group comprising 25% of patients. In conclusion, ML enhances risk stratification in patients with MF undergoing allo-HCT, paving the way for personalized medicine. A web application (https://gemfin.click/ebmt) based on the RSF model offers a practical tool to identify patients at high risk for poor transplantation outcomes, supporting informed treatment decisions and advancing individualized care.
Ematologia e Terapie Cellulari IRCCS Ospedale Policlinico San Martino Genova Italy
European Group for Blood and Marrow Transplantation Leiden Study Unit Leiden The Netherlands
Hematology Department Central Clinical Hospital The Medical University of Warsaw Warsaw Poland
Hematology Department Centre Hospitalier Universitaire de Lille INSERM U1286 Infinite Lille France
Hematology Department Erasmus MC Cancer Institute Rotterdam The Netherlands
Hematology Department Federico 2 University of Naples Naples Italy
Hematology Department Maria Skłodowska Curie National Research Institute of Oncology Gliwice Poland
Hematology Department Medical Clinic and Policlinic Leipzig Germany
Hematology Department Rigshospitalet Copenhagen Denmark
Hematology Department Saint Louis Hospital Bone Marrow Transplantation Unit Paris France
Hematology Department University Hospital Basel Basel Switzerland
Hematology Department University Hospital Essen Duesseldorf Germany
Hematology Department University Hospital Technische Universität Dresden Dresden Germany
Hematology Department University Hospital Uppsala Uppsala Sweden
Hematology Department University Medical Center Hamburg Eppendorf Hamburg Germany
Hematology Department University Medical Centre Utrecht The Netherlands
Hematology Department University of Liege Liege Belgium
Hematology Department University of Muenster Muenster Germany
Institute of Hematology and Blood Transfusion Prague Czech Republic
Medizinische Klinik m S Hämatologie Onkologie und Tumorimmunologie Berlin Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25015252
- 003
- CZ-PrNML
- 005
- 20250731090853.0
- 007
- ta
- 008
- 250708s2025 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1182/blood.2024027287 $2 doi
- 035 __
- $a (PubMed)40145857
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Hernández-Boluda, Juan Carlos $u Hematology Department, Hospital Clínico Universitario, Instituto de Investigación Sanitaria del Hospital Clínico de Valencia, University of Valencia, Valencia, Spain $1 https://orcid.org/0000000242893113
- 245 10
- $a Use of machine learning techniques to predict poor survival after hematopoietic cell transplantation for myelofibrosis / $c JC. Hernández-Boluda, A. Mosquera-Orgueira, L. Gras, L. Koster, J. Tuffnell, N. Kröger, M. Gambella, T. Schroeder, M. Robin, K. Sockel, J. Passweg, IW. Blau, I. Yakoub-Agha, R. Van Dijck, M. Stelljes, H. Sengeloev, J. Vydra, U. Platzbecker, M. de Witte, F. Baron, K. Carlson, J. Rojas, C. Pérez Míguez, D. Crucitti, K. Raj, J. Drozd-Sokolowska, G. Battipaglia, N. Polverelli, T. Czerw, DP. McLornan
- 520 9_
- $a With the incorporation of effective therapies for myelofibrosis (MF), accurately predicting outcomes after allogeneic hematopoietic cell transplantation (allo-HCT) is crucial for determining the optimal timing for this procedure. Using data from 5183 patients with MF who underwent first allo-HCT between 2005 and 2020 at European Society for Blood and Marrow Transplantation centers, we examined different machine learning (ML) models to predict overall survival after transplant. The cohort was divided into a training set (75%) and a test set (25%) for model validation. A random survival forests (RSF) model was developed based on 10 variables: patient age, comorbidity index, performance status, blood blasts, hemoglobin, leukocytes, platelets, donor type, conditioning intensity, and graft-versus-host disease prophylaxis. Its performance was compared with a 4-level Cox regression-based score and other ML-based models derived from the same data set, and with the Center for International Blood and Marrow Transplant Research score. The RSF outperformed all comparators, achieving better concordance indices across both primary and postessential thrombocythemia/polycythemia vera MF subgroups. The robustness and generalizability of the RSF model was confirmed by Akaike information criterion and time-dependent receiver operating characteristic area under the curve metrics in both sets. Although all models were prognostic for nonrelapse mortality, the RSF provided better curve separation, effectively identifying a high-risk group comprising 25% of patients. In conclusion, ML enhances risk stratification in patients with MF undergoing allo-HCT, paving the way for personalized medicine. A web application (https://gemfin.click/ebmt) based on the RSF model offers a practical tool to identify patients at high risk for poor transplantation outcomes, supporting informed treatment decisions and advancing individualized care.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a strojové učení $7 D000069550
- 650 12
- $a primární myelofibróza $x terapie $x mortalita $7 D055728
- 650 12
- $a transplantace hematopoetických kmenových buněk $x mortalita $7 D018380
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a prognóza $7 D011379
- 650 _2
- $a míra přežití $7 D015996
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Mosquera-Orgueira, Adrián $u Hematology Department. University Hospital of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain $1 https://orcid.org/0000000348386750
- 700 1_
- $a Gras, Luuk $u European Group for Blood and Marrow Transplantation Leiden Study Unit, Leiden, The Netherlands
- 700 1_
- $a Koster, Linda $u European Group for Blood and Marrow Transplantation Leiden Study Unit, Leiden, The Netherlands
- 700 1_
- $a Tuffnell, Joe $u European Group for Blood and Marrow Transplantation Leiden Study Unit, Leiden, The Netherlands
- 700 1_
- $a Kröger, Nicolaus $u Hematology Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany $1 https://orcid.org/0000000151039966
- 700 1_
- $a Gambella, Massimiliano $u Ematologia e Terapie Cellulari, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- 700 1_
- $a Schroeder, Thomas $u Hematology Department, University Hospital Essen, Duesseldorf, Germany
- 700 1_
- $a Robin, Marie $u Hematology Department, Saint-Louis Hospital, Bone Marrow Transplantation Unit, Paris, France $1 https://orcid.org/0000000313889876
- 700 1_
- $a Sockel, Katja $u Hematology Department, University Hospital Technische Universität Dresden, Dresden, Germany
- 700 1_
- $a Passweg, Jakob $u Hematology Department, University Hospital Basel, Basel, Switzerland $1 https://orcid.org/0000000170923351
- 700 1_
- $a Blau, Igor Wolfgang $u Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Berlin, Germany
- 700 1_
- $a Yakoub-Agha, Ibrahim $u Hematology Department, Centre Hospitalier Universitaire de Lille, INSERM U1286, Infinite, Lille, France $1 https://orcid.org/0000000345248782
- 700 1_
- $a Van Dijck, Ruben $u Hematology Department, Erasmus MC Cancer Institute, Rotterdam, The Netherlands $1 https://orcid.org/0000000347487648
- 700 1_
- $a Stelljes, Mattias $u Hematology Department, University of Muenster, Muenster, Germany $1 https://orcid.org/0000000293315145
- 700 1_
- $a Sengeloev, Henrik $u Hematology Department, Rigshospitalet, Copenhagen, Denmark
- 700 1_
- $a Vydra, Jan $u Institute of Hematology and Blood Transfusion, Prague, Czech Republic $1 https://orcid.org/0000000242743895
- 700 1_
- $a Platzbecker, Uwe $u Hematology Department, Medical Clinic and Policlinic, Leipzig, Germany $1 https://orcid.org/0000000318633239 $7 xx0239891
- 700 1_
- $a de Witte, Moniek $u Hematology Department, University Medical Centre, Utrecht, The Netherlands
- 700 1_
- $a Baron, Frédéric $u Hematology Department, University of Liege, Liege, Belgium $1 https://orcid.org/0000000229443812
- 700 1_
- $a Carlson, Kristina $u Hematology Department, University Hospital Uppsala, Uppsala, Sweden $1 https://orcid.org/0000000203031350
- 700 1_
- $a Rojas, Javier $u Hematology Department. University Hospital of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- 700 1_
- $a Pérez Míguez, Carlos $u Hematology Department. University Hospital of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain $1 https://orcid.org/0009000479729431
- 700 1_
- $a Crucitti, Davide $u Hematology Department. University Hospital of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain $1 https://orcid.org/0009000694589793
- 700 1_
- $a Raj, Kavita $u Hematology Department, University College London Hospitals National Health Service Trust, London, United Kingdom $1 https://orcid.org/000000028258354X
- 700 1_
- $a Drozd-Sokolowska, Joanna $u Hematology Department, Central Clinical Hospital, The Medical University of Warsaw, Warsaw, Poland $1 https://orcid.org/0000000245626264
- 700 1_
- $a Battipaglia, Giorgia $u Hematology Department, Federico II University of Naples, Naples, Italy $1 https://orcid.org/0000000252011786
- 700 1_
- $a Polverelli, Nicola $u Unit of Bone Marrow Transplantation, Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy $1 https://orcid.org/0000000162979697
- 700 1_
- $a Czerw, Tomasz $u Hematology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland $1 https://orcid.org/0000000331084035
- 700 1_
- $a McLornan, Donal P $u Hematology Department, University College London Hospitals National Health Service Trust, London, United Kingdom
- 773 0_
- $w MED00000807 $t Blood $x 1528-0020 $g Roč. 145, č. 26 (2025), s. 3139-3152
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40145857 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250708 $b ABA008
- 991 __
- $a 20250731090848 $b ABA008
- 999 __
- $a ok $b bmc $g 2366237 $s 1252377
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 145 $c 26 $d 3139-3152 $e 20250626 $i 1528-0020 $m Blood $n Blood $x MED00000807
- LZP __
- $a Pubmed-20250708