Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Focused ultrasound-induced blood-brain barrier opening: A comparative analysis of permeability quantification based on Ktrans and PS

D. Hývlová, R. Jiřík, J. Vitouš, O. Macíček, L. Krátká, E. Dražanová, Z. Starčuk

. 2025 ; 93 (6) : 2610-2622. [pub] 20250218

Language English Country United States

Document type Journal Article, Comparative Study

Grant support
GA22-10953S Grantová Agentura České Republiky
LM2023050 Ministerstvo Školství, Mládeže a Tělovýchovy

PURPOSE: Focused ultrasound-induced blood-brain barrier (BBB) opening is a promising method for neurotherapeutic delivery. The standard for quantifying induced BBB permeability is the Ktrans$$ {K}^{\mathrm{trans}} $$ parameter, which reflects both permeability and plasma flow. The influence of plasma flow can be eliminated by estimating the PS parameter. However, this parameter has been largely unexplored in this application. This study aims to compare permeability estimates based on Ktrans$$ {K}^{\mathrm{trans}} $$ and PS in focused ultrasound-induced BBB opening experiments. METHODS: We used the extended Tofts model (ETM) and the two-compartment exchange model (2CXM) to estimate Ktrans$$ {K}^{\mathrm{trans}} $$ and PS parameters, respectively. Permeability estimates were compared using simulated concentration curves, simulated DCE-MRI data, and real datasets. We explored the influence of spatially-regularized model fitting on the results. RESULTS: For opened BBB, Ktrans$$ {K}^{\mathrm{trans}} $$ was minimally influenced by plasma flow under the tested conditions. However, fitting the ETM often introduced outliers in Ktrans$$ {K}^{\mathrm{trans}} $$ estimates in regions with closed BBB. The 2CXM outperformed the ETM at high signal-to-noise ratios, but its higher complexity led to lower precision at low signal-to-noise ratios. Both these issues were successfully compensated by spatially-regularized model fitting. CONCLUSION: Both Ktrans$$ {K}^{\mathrm{trans}} $$ and PS seem to be eligible options for the quantification of BBB opening, and the correct choice depends on the specifics of the acquired DCE-MRI data. Additionally, spatial regularization has demonstrated its importance in enhancing the accuracy and reproducibility of results for both models.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25015557
003      
CZ-PrNML
005      
20250731091054.0
007      
ta
008      
250708s2025 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/mrm.30446 $2 doi
035    __
$a (PubMed)39963048
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Hývlová, Denisa $u Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czechia $u Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia $1 https://orcid.org/0009000078998470
245    10
$a Focused ultrasound-induced blood-brain barrier opening: A comparative analysis of permeability quantification based on Ktrans and PS / $c D. Hývlová, R. Jiřík, J. Vitouš, O. Macíček, L. Krátká, E. Dražanová, Z. Starčuk
520    9_
$a PURPOSE: Focused ultrasound-induced blood-brain barrier (BBB) opening is a promising method for neurotherapeutic delivery. The standard for quantifying induced BBB permeability is the Ktrans$$ {K}^{\mathrm{trans}} $$ parameter, which reflects both permeability and plasma flow. The influence of plasma flow can be eliminated by estimating the PS parameter. However, this parameter has been largely unexplored in this application. This study aims to compare permeability estimates based on Ktrans$$ {K}^{\mathrm{trans}} $$ and PS in focused ultrasound-induced BBB opening experiments. METHODS: We used the extended Tofts model (ETM) and the two-compartment exchange model (2CXM) to estimate Ktrans$$ {K}^{\mathrm{trans}} $$ and PS parameters, respectively. Permeability estimates were compared using simulated concentration curves, simulated DCE-MRI data, and real datasets. We explored the influence of spatially-regularized model fitting on the results. RESULTS: For opened BBB, Ktrans$$ {K}^{\mathrm{trans}} $$ was minimally influenced by plasma flow under the tested conditions. However, fitting the ETM often introduced outliers in Ktrans$$ {K}^{\mathrm{trans}} $$ estimates in regions with closed BBB. The 2CXM outperformed the ETM at high signal-to-noise ratios, but its higher complexity led to lower precision at low signal-to-noise ratios. Both these issues were successfully compensated by spatially-regularized model fitting. CONCLUSION: Both Ktrans$$ {K}^{\mathrm{trans}} $$ and PS seem to be eligible options for the quantification of BBB opening, and the correct choice depends on the specifics of the acquired DCE-MRI data. Additionally, spatial regularization has demonstrated its importance in enhancing the accuracy and reproducibility of results for both models.
650    12
$a hematoencefalická bariéra $x diagnostické zobrazování $x metabolismus $x účinky záření $7 D001812
650    12
$a magnetická rezonanční tomografie $x metody $7 D008279
650    _2
$a permeabilita $7 D010539
650    _2
$a počítačová simulace $7 D003198
650    _2
$a zvířata $7 D000818
650    _2
$a lidé $7 D006801
650    _2
$a mozek $x diagnostické zobrazování $7 D001921
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a kontrastní látky $7 D003287
655    _2
$a časopisecké články $7 D016428
655    _2
$a srovnávací studie $7 D003160
700    1_
$a Jiřík, Radovan $u Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czechia $1 https://orcid.org/0000000325559428
700    1_
$a Vitouš, Jiří $u Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czechia $u Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia $1 https://orcid.org/0000000291838794
700    1_
$a Macíček, Ondřej $u Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czechia $1 https://orcid.org/0000000201795779
700    1_
$a Krátká, Lucie $u Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czechia $1 https://orcid.org/0000000311045215
700    1_
$a Dražanová, Eva $u Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czechia $u Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia $1 https://orcid.org/0000000318444489
700    1_
$a Starčuk, Zenon $u Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czechia $1 https://orcid.org/0000000212180585 $7 xx0070830
773    0_
$w MED00003172 $t Magnetic resonance in medicine $x 1522-2594 $g Roč. 93, č. 6 (2025), s. 2610-2622
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39963048 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250708 $b ABA008
991    __
$a 20250731091049 $b ABA008
999    __
$a ok $b bmc $g 2366416 $s 1252682
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 93 $c 6 $d 2610-2622 $e 20250218 $i 1522-2594 $m Magnetic resonance in medicine $n Magn Reson Med $x MED00003172
GRA    __
$a GA22-10953S $p Grantová Agentura České Republiky
GRA    __
$a LM2023050 $p Ministerstvo Školství, Mládeže a Tělovýchovy
LZP    __
$a Pubmed-20250708

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...