Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Engineering cardiolipin binding to an artificial membrane protein reveals determinants for lipid-mediated stabilization

ML. Abramsson, RA. Corey, JL. Skerle, LJ. Persson, O. Anden, AO. Oluwole, RJ. Howard, E. Lindahl, CV. Robinson, K. Strisovsky, EG. Marklund, D. Drew, PJ. Stansfeld, M. Landreh

. 2025 ; 14 (-) : . [pub] 20250430

Language English Country England, Great Britain

Document type Journal Article

Grant support
InterCOST programme (project no. LUC23180) Ministerstvo Školství, Mládeže a Tělovýchovy
2019-02433 Vetenskapsrådet
BB/P01948X/1 Biotechnology and Biological Sciences Research Council - United Kingdom
Consolidator Grant Svenska Sällskapet för Medicinsk Forskning
2020- 04825 Swedish Research Council
BB/S003339/1 Biotechnology and Biological Sciences Research Council - United Kingdom
Operational Programme CZ.02.1.01/0.0/0.0/16_019/0000729 European Regional Development Fund
10.35802/208361 Wellcome Trust - United Kingdom
2021-05806 Vetenskapsrådet
BB/Y003187/1 Biotechnology and Biological Sciences Research Council - United Kingdom
2019-01961 Vetenskapsrådet
MR/V028839/1 Medical Research Council - United Kingdom
22-2023 Pj Cancerfonden
MR/S009213/1 Medical Research Council - United Kingdom
Wellcome Trust - United Kingdom

Integral membrane proteins carry out essential functions in the cell, and their activities are often modulated by specific protein-lipid interactions in the membrane. Here, we elucidate the intricate role of cardiolipin (CDL), a regulatory lipid, as a stabilizer of membrane proteins and their complexes. Using the in silico-designed model protein TMHC4_R (ROCKET) as a scaffold, we employ a combination of molecular dynamics simulations and native mass spectrometry to explore the protein features that facilitate preferential lipid interactions and mediate stabilization. We find that the spatial arrangement of positively charged residues as well as local conformational flexibility are factors that distinguish stabilizing from non-stabilizing CDL interactions. However, we also find that even in this controlled, artificial system, a clear-cut distinction between binding and stabilization is difficult to attain, revealing that overlapping lipid contacts can partially compensate for the effects of binding site mutations. Extending our insights to naturally occurring proteins, we identify a stabilizing CDL site within the E. coli rhomboid intramembrane protease GlpG and uncover its regulatory influence on enzyme substrate preference. In this work, we establish a framework for engineering functional lipid interactions, paving the way for the design of proteins with membrane-specific properties or functions.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25016012
003      
CZ-PrNML
005      
20250731091438.0
007      
ta
008      
250708e20250430enk f 000 0|eng||
009      
AR
024    7_
$a 10.7554/eLife.104237 $2 doi
035    __
$a (PubMed)40304703
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Abramsson, Mia L $u Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
245    10
$a Engineering cardiolipin binding to an artificial membrane protein reveals determinants for lipid-mediated stabilization / $c ML. Abramsson, RA. Corey, JL. Skerle, LJ. Persson, O. Anden, AO. Oluwole, RJ. Howard, E. Lindahl, CV. Robinson, K. Strisovsky, EG. Marklund, D. Drew, PJ. Stansfeld, M. Landreh
520    9_
$a Integral membrane proteins carry out essential functions in the cell, and their activities are often modulated by specific protein-lipid interactions in the membrane. Here, we elucidate the intricate role of cardiolipin (CDL), a regulatory lipid, as a stabilizer of membrane proteins and their complexes. Using the in silico-designed model protein TMHC4_R (ROCKET) as a scaffold, we employ a combination of molecular dynamics simulations and native mass spectrometry to explore the protein features that facilitate preferential lipid interactions and mediate stabilization. We find that the spatial arrangement of positively charged residues as well as local conformational flexibility are factors that distinguish stabilizing from non-stabilizing CDL interactions. However, we also find that even in this controlled, artificial system, a clear-cut distinction between binding and stabilization is difficult to attain, revealing that overlapping lipid contacts can partially compensate for the effects of binding site mutations. Extending our insights to naturally occurring proteins, we identify a stabilizing CDL site within the E. coli rhomboid intramembrane protease GlpG and uncover its regulatory influence on enzyme substrate preference. In this work, we establish a framework for engineering functional lipid interactions, paving the way for the design of proteins with membrane-specific properties or functions.
650    12
$a kardiolipiny $x metabolismus $x chemie $7 D002308
650    12
$a membránové proteiny $x metabolismus $x chemie $x genetika $7 D008565
650    _2
$a simulace molekulární dynamiky $7 D056004
650    _2
$a vazba proteinů $7 D011485
650    12
$a proteiny z Escherichia coli $x metabolismus $x chemie $x genetika $7 D029968
650    _2
$a Escherichia coli $x metabolismus $x genetika $7 D004926
650    12
$a proteinové inženýrství $7 D015202
650    _2
$a endopeptidasy $x metabolismus $x chemie $x genetika $7 D010450
650    _2
$a DNA vazebné proteiny $7 D004268
655    _2
$a časopisecké články $7 D016428
700    1_
$a Corey, Robin A $u School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom $1 https://orcid.org/0000000318207993
700    1_
$a Skerle, Jan L $u Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden $u Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
700    1_
$a Persson, Louise J $u Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden $1 https://orcid.org/0000000173004019
700    1_
$a Anden, Olivia $u Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
700    1_
$a Oluwole, Abraham O $u Department of Chemistry, University of Oxford, Oxford, United Kingdom $u Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom $1 https://orcid.org/0000000186474781
700    1_
$a Howard, Rebecca J $u Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden $1 https://orcid.org/0000000320493378
700    1_
$a Lindahl, Erik $u Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden $u Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
700    1_
$a Robinson, Carol V $u Department of Chemistry, University of Oxford, Oxford, United Kingdom $u Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
700    1_
$a Strisovsky, Kvido $u Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic $1 https://orcid.org/0000000336770907
700    1_
$a Marklund, Erik G $u Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden $1 https://orcid.org/0000000298045009
700    1_
$a Drew, David $u Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden $1 https://orcid.org/0000000188666349
700    1_
$a Stansfeld, Phillip J $u School of Life Sciences & Chemistry, University of Warwick, Coventry, United Kingdom
700    1_
$a Landreh, Michael $u Department for Cell and Molecular Biology, Uppsala University, Uppsala, Sweden $1 https://orcid.org/0000000279584074
773    0_
$w MED00188753 $t eLife $x 2050-084X $g Roč. 14 (20250430)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40304703 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250708 $b ABA008
991    __
$a 20250731091433 $b ABA008
999    __
$a ok $b bmc $g 2366698 $s 1253137
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 14 $c - $e 20250430 $i 2050-084X $m eLife $n Elife $x MED00188753
GRA    __
$a InterCOST programme (project no. LUC23180) $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a 2019-02433 $p Vetenskapsrådet
GRA    __
$a BB/P01948X/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a Consolidator Grant $p Svenska Sällskapet för Medicinsk Forskning
GRA    __
$a 2020- 04825 $p Swedish Research Council
GRA    __
$a BB/S003339/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a Operational Programme CZ.02.1.01/0.0/0.0/16_019/0000729 $p European Regional Development Fund
GRA    __
$a 10.35802/208361 $p Wellcome Trust $2 United Kingdom
GRA    __
$a 2021-05806 $p Vetenskapsrådet
GRA    __
$a BB/Y003187/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a 2019-01961 $p Vetenskapsrådet
GRA    __
$a MR/V028839/1 $p Medical Research Council $2 United Kingdom
GRA    __
$a 22-2023 Pj $p Cancerfonden
GRA    __
$a MR/S009213/1 $p Medical Research Council $2 United Kingdom
GRA    __
$p Wellcome Trust $2 United Kingdom
LZP    __
$a Pubmed-20250708

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...