-
Je něco špatně v tomto záznamu ?
FakET: Simulating cryo-electron tomograms with neural style transfer
P. Harar, L. Herrmann, P. Grohs, D. Haselbach
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
- MeSH
- algoritmy MeSH
- deep learning * MeSH
- elektronová kryomikroskopie * metody MeSH
- počítačové zpracování obrazu metody MeSH
- software MeSH
- tomografie elektronová * metody MeSH
- Publikační typ
- časopisecké články MeSH
In cryo-electron microscopy, accurate particle localization and classification are imperative. Recent deep learning solutions, though successful, require extensive training datasets. The protracted generation time of physics-based models, often employed to produce these datasets, limits their broad applicability. We introduce FakET, a method based on neural style transfer, capable of simulating the forward operator of any cryo transmission electron microscope. It can be used to adapt a synthetic training dataset according to reference data producing high-quality simulated micrographs or tilt-series. To assess the quality of our generated data, we used it to train a state-of-the-art localization and classification architecture and compared its performance with a counterpart trained on benchmark data. Remarkably, our technique matches the performance, boosts data generation speed 750×, uses 33× less memory, and scales well to typical transmission electron microscope detector sizes. It leverages GPU acceleration and parallel processing. The source code is available at https://github.com/paloha/faket/.
Haselbach Lab Research Institute of Molecular Pathology Vienna Austria
Institute of Science and Technology Austria Klosterneuburg Austria
Mathematical Data Science Faculty of Mathematics University of Vienna Vienna Austria
Research Network Data Science University of Vienna Vienna Austria
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25016180
- 003
- CZ-PrNML
- 005
- 20250731091555.0
- 007
- ta
- 008
- 250708s2025 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.str.2025.01.020 $2 doi
- 035 __
- $a (PubMed)39947174
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Harar, Pavol $u Mathematical Data Science (MDS), Faculty of Mathematics, University of Vienna, Vienna, Austria; Haselbach Lab, Research Institute of Molecular Pathology (IMP), Vienna, Austria; Research Network Data Science, University of Vienna, Vienna, Austria; Department of Telecommunications, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic; Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria. Electronic address: pavol.harar@ista.ac.at
- 245 10
- $a FakET: Simulating cryo-electron tomograms with neural style transfer / $c P. Harar, L. Herrmann, P. Grohs, D. Haselbach
- 520 9_
- $a In cryo-electron microscopy, accurate particle localization and classification are imperative. Recent deep learning solutions, though successful, require extensive training datasets. The protracted generation time of physics-based models, often employed to produce these datasets, limits their broad applicability. We introduce FakET, a method based on neural style transfer, capable of simulating the forward operator of any cryo transmission electron microscope. It can be used to adapt a synthetic training dataset according to reference data producing high-quality simulated micrographs or tilt-series. To assess the quality of our generated data, we used it to train a state-of-the-art localization and classification architecture and compared its performance with a counterpart trained on benchmark data. Remarkably, our technique matches the performance, boosts data generation speed 750×, uses 33× less memory, and scales well to typical transmission electron microscope detector sizes. It leverages GPU acceleration and parallel processing. The source code is available at https://github.com/paloha/faket/.
- 650 12
- $a elektronová kryomikroskopie $x metody $7 D020285
- 650 _2
- $a software $7 D012984
- 650 12
- $a deep learning $7 D000077321
- 650 12
- $a tomografie elektronová $x metody $7 D055032
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a algoritmy $7 D000465
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Herrmann, Lukas $u Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Linz, Austria
- 700 1_
- $a Grohs, Philipp $u Mathematical Data Science (MDS), Faculty of Mathematics, University of Vienna, Vienna, Austria; Research Network Data Science, University of Vienna, Vienna, Austria; Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Linz, Austria
- 700 1_
- $a Haselbach, David $u Haselbach Lab, Research Institute of Molecular Pathology (IMP), Vienna, Austria. Electronic address: david.haselbach@imp.ac.at
- 773 0_
- $w MED00006440 $t Structure $x 1878-4186 $g Roč. 33, č. 4 (2025), s. 820-827.e4
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39947174 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250708 $b ABA008
- 991 __
- $a 20250731091549 $b ABA008
- 999 __
- $a ok $b bmc $g 2366780 $s 1253305
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 33 $c 4 $d 820-827.e4 $e 20250212 $i 1878-4186 $m Structure $n Structure $x MED00006440
- LZP __
- $a Pubmed-20250708