• Je něco špatně v tomto záznamu ?

FakET: Simulating cryo-electron tomograms with neural style transfer

P. Harar, L. Herrmann, P. Grohs, D. Haselbach

. 2025 ; 33 (4) : 820-827.e4. [pub] 20250212

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25016180

In cryo-electron microscopy, accurate particle localization and classification are imperative. Recent deep learning solutions, though successful, require extensive training datasets. The protracted generation time of physics-based models, often employed to produce these datasets, limits their broad applicability. We introduce FakET, a method based on neural style transfer, capable of simulating the forward operator of any cryo transmission electron microscope. It can be used to adapt a synthetic training dataset according to reference data producing high-quality simulated micrographs or tilt-series. To assess the quality of our generated data, we used it to train a state-of-the-art localization and classification architecture and compared its performance with a counterpart trained on benchmark data. Remarkably, our technique matches the performance, boosts data generation speed 750×, uses 33× less memory, and scales well to typical transmission electron microscope detector sizes. It leverages GPU acceleration and parallel processing. The source code is available at https://github.com/paloha/faket/.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25016180
003      
CZ-PrNML
005      
20250731091555.0
007      
ta
008      
250708s2025 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.str.2025.01.020 $2 doi
035    __
$a (PubMed)39947174
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Harar, Pavol $u Mathematical Data Science (MDS), Faculty of Mathematics, University of Vienna, Vienna, Austria; Haselbach Lab, Research Institute of Molecular Pathology (IMP), Vienna, Austria; Research Network Data Science, University of Vienna, Vienna, Austria; Department of Telecommunications, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic; Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria. Electronic address: pavol.harar@ista.ac.at
245    10
$a FakET: Simulating cryo-electron tomograms with neural style transfer / $c P. Harar, L. Herrmann, P. Grohs, D. Haselbach
520    9_
$a In cryo-electron microscopy, accurate particle localization and classification are imperative. Recent deep learning solutions, though successful, require extensive training datasets. The protracted generation time of physics-based models, often employed to produce these datasets, limits their broad applicability. We introduce FakET, a method based on neural style transfer, capable of simulating the forward operator of any cryo transmission electron microscope. It can be used to adapt a synthetic training dataset according to reference data producing high-quality simulated micrographs or tilt-series. To assess the quality of our generated data, we used it to train a state-of-the-art localization and classification architecture and compared its performance with a counterpart trained on benchmark data. Remarkably, our technique matches the performance, boosts data generation speed 750×, uses 33× less memory, and scales well to typical transmission electron microscope detector sizes. It leverages GPU acceleration and parallel processing. The source code is available at https://github.com/paloha/faket/.
650    12
$a elektronová kryomikroskopie $x metody $7 D020285
650    _2
$a software $7 D012984
650    12
$a deep learning $7 D000077321
650    12
$a tomografie elektronová $x metody $7 D055032
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a algoritmy $7 D000465
655    _2
$a časopisecké články $7 D016428
700    1_
$a Herrmann, Lukas $u Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Linz, Austria
700    1_
$a Grohs, Philipp $u Mathematical Data Science (MDS), Faculty of Mathematics, University of Vienna, Vienna, Austria; Research Network Data Science, University of Vienna, Vienna, Austria; Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Linz, Austria
700    1_
$a Haselbach, David $u Haselbach Lab, Research Institute of Molecular Pathology (IMP), Vienna, Austria. Electronic address: david.haselbach@imp.ac.at
773    0_
$w MED00006440 $t Structure $x 1878-4186 $g Roč. 33, č. 4 (2025), s. 820-827.e4
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39947174 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250708 $b ABA008
991    __
$a 20250731091549 $b ABA008
999    __
$a ok $b bmc $g 2366780 $s 1253305
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 33 $c 4 $d 820-827.e4 $e 20250212 $i 1878-4186 $m Structure $n Structure $x MED00006440
LZP    __
$a Pubmed-20250708

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...