• Something wrong with this record ?

Functional redundancy and niche specialization in honeybee and Varroa microbiomes

Š. Skičková, M. Kratou, K. Svobodová, A. Maitre, L. Abuin-Denis, A. Wu-Chuang, D. Obregón, MB. Said, V. Majláthová, A. Krejčí, A. Cabezas-Cruz

. 2025 ; 28 (4) : 795-810. [pub] 20240822

Language English

Document type Journal Article

The honeybee (Apis mellifera) is a key pollinator critical to global agriculture, facing threats from various stressors, including the ectoparasitic Varroa mite (Varroa destructor). Previous studies have identified shared bacteria between Varroa mites and honeybees, yet it remains unclear if these bacteria assemble similarly in both species. This study builds on existing knowledge by investigating co-occurrence patterns in the microbiomes of both Varroa mites and honeybees, shedding light on potential interactions. Leveraging 16S rRNA datasets, we conducted co-occurrence network analyses, explored Core Association Networks (CAN) and assess network robustness. Comparative network analyses revealed structural differences between honeybee and mite microbiomes, along with shared core features and microbial motifs. The mite network exhibited lower robustness, suggesting less resistance to taxa extension compared to honeybees. Furthermore, analyses of predicted functional profiling and taxa contribution revealed that common central pathways in the metabolic networks have different taxa contributing to Varroa mites and honeybee microbiomes. The results show that while both microbial systems exhibit functional redundancy, in which different taxa contribute to the functional stability and resilience of the ecosystem, there is evidence for niche specialization resulting in unique contributions to specific pathways in each part of this host-parasite system. The specificity of taxa contribution to key pathways offers targeted approaches to Varroa microbiome management and preserving honeybee microbiome. Our findings provide valuable insights into microbial interactions, aiding farmers and beekeepers in maintaining healthy and resilient bee colonies amid increasing Varroa mite infestations.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25016321
003      
CZ-PrNML
005      
20250731092828.0
007      
ta
008      
250708s2025 sz f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s10123-024-00582-y $2 doi
035    __
$a (PubMed)39172274
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a x
100    1_
$a Skičková, Štefánia $u Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Animal Physiology, Košice, 04181, Slovakia. stefania.skickova@student.upjs.sk
245    10
$a Functional redundancy and niche specialization in honeybee and Varroa microbiomes / $c Š. Skičková, M. Kratou, K. Svobodová, A. Maitre, L. Abuin-Denis, A. Wu-Chuang, D. Obregón, MB. Said, V. Majláthová, A. Krejčí, A. Cabezas-Cruz
520    9_
$a The honeybee (Apis mellifera) is a key pollinator critical to global agriculture, facing threats from various stressors, including the ectoparasitic Varroa mite (Varroa destructor). Previous studies have identified shared bacteria between Varroa mites and honeybees, yet it remains unclear if these bacteria assemble similarly in both species. This study builds on existing knowledge by investigating co-occurrence patterns in the microbiomes of both Varroa mites and honeybees, shedding light on potential interactions. Leveraging 16S rRNA datasets, we conducted co-occurrence network analyses, explored Core Association Networks (CAN) and assess network robustness. Comparative network analyses revealed structural differences between honeybee and mite microbiomes, along with shared core features and microbial motifs. The mite network exhibited lower robustness, suggesting less resistance to taxa extension compared to honeybees. Furthermore, analyses of predicted functional profiling and taxa contribution revealed that common central pathways in the metabolic networks have different taxa contributing to Varroa mites and honeybee microbiomes. The results show that while both microbial systems exhibit functional redundancy, in which different taxa contribute to the functional stability and resilience of the ecosystem, there is evidence for niche specialization resulting in unique contributions to specific pathways in each part of this host-parasite system. The specificity of taxa contribution to key pathways offers targeted approaches to Varroa microbiome management and preserving honeybee microbiome. Our findings provide valuable insights into microbial interactions, aiding farmers and beekeepers in maintaining healthy and resilient bee colonies amid increasing Varroa mite infestations.
650    _2
$a zvířata $7 D000818
650    _2
$a včely $x mikrobiologie $x parazitologie $7 D001516
650    12
$a Varroidae $x mikrobiologie $7 D057077
650    12
$a mikrobiota $7 D064307
650    12
$a Bacteria $x klasifikace $x genetika $x izolace a purifikace $7 D001419
650    _2
$a RNA ribozomální 16S $x genetika $7 D012336
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kratou, Myriam $u Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
700    1_
$a Svobodová, Karolína $u University of South Bohemia, Faculty of Science, České Budějovice, 37005, Czech Republic
700    1_
$a Maitre, Apolline $u ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France $u INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250, Corte, France $u EA 7310, Laboratoire de Virologie, Université de Corse, 20250, Corte, France
700    1_
$a Abuin-Denis, Lianet $u ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France $u Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 Between 158 and 190, P.O. Box 6162, 10600, Havana, Cuba
700    1_
$a Wu-Chuang, Alejandra $u ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
700    1_
$a Obregón, Dasiel $u School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
700    1_
$a Said, Mourad Ben $u Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia $u Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
700    1_
$a Majláthová, Viktória $u Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Animal Physiology, Košice, 04181, Slovakia
700    1_
$a Krejčí, Alena $u University of South Bohemia, Faculty of Science, České Budějovice, 37005, Czech Republic $u Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, 37005, Czech Republic
700    1_
$a Cabezas-Cruz, Alejandro $u ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France. alejandro.cabezas@vet-alfort.fr
773    0_
$w MED00005426 $t International microbiology $x 1618-1905 $g Roč. 28, č. 4 (2025), s. 795-810
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39172274 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250708 $b ABA008
991    __
$a 20250731092822 $b ABA008
999    __
$a ok $b bmc $g 2366881 $s 1253446
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 28 $c 4 $d 795-810 $e 20240822 $i 1618-1905 $m International microbiology $n Int Microbiol $x MED00005426
LZP    __
$a Pubmed-20250708

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...