-
Je něco špatně v tomto záznamu ?
CoPPIs algorithm: a tool to unravel protein cooperative strategies in pathophysiological conditions
A. Lomagno, I. Yusuf, G. Tosadori, D. Bonanomi, P. Luigi Mauri, D. Di Silvestre
Jazyk angličtina
Typ dokumentu časopisecké články
Grantová podpora
2022Z2TE5P
PRIN2022
P2022LY3F4
PRIN PNRR
NLK
Directory of Open Access Journals
od 2024
PubMed Central
od 2008
Oxford Journals Open Access Collection
od 2000
ROAD: Directory of Open Access Scholarly Resources
od 2000
PubMed
40194557
DOI
10.1093/bib/bbaf146
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- glukosylceramidasa genetika metabolismus MeSH
- lidé MeSH
- mapování interakce mezi proteiny * metody MeSH
- mapy interakcí proteinů MeSH
- mozek metabolismus MeSH
- Parkinsonova nemoc * metabolismus genetika patofyziologie MeSH
- proteomika metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
We present here the co-expressed protein-protein interactions algorithm. In addition to minimizing correlation-causality imbalance and contextualizing protein-protein interactions to the investigated systems, it combines protein-protein interactions and protein co-expression networks to identify differentially correlated functional modules. To test the algorithm, we processed a set of proteomic profiles from different brain regions of controls and subjects affected by idiopathic Parkinson's disease or carrying a GBA1 mutation. Its robustness was supported by the extraction of functional modules, related to translation and mitochondria, whose involvement in Parkinson's disease pathogenesis is well documented. Furthermore, the selection of hubs and bottlenecks from the weightedprotein-protein interactions networks provided molecular clues consistent with the Parkinson pathophysiology. Of note, like quantification, the algorithm revealed less variations when comparing disease groups than when comparing diseased and controls. However, correlation and quantification results showed low overlap, suggesting the complementarity of these measures. An observation that opens the way to a new investigation strategy that takes into account not only protein expression, but also the level of coordination among proteins that cooperate to perform a given function.
Division of Neuroscience IRCCS San Raffaele Scientific Institute Olgettina 60 20132 Milan Italy
Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 14200 Praha 4 Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25016360
- 003
- CZ-PrNML
- 005
- 20250731092843.0
- 007
- ta
- 008
- 250708s2025 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/bib/bbaf146 $2 doi
- 035 __
- $a (PubMed)40194557
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a x
- 100 1_
- $a Lomagno, Andrea $u Clinical Proteomics Laboratory, Elixir Infrastructure, Institute for Biomedical Technologies - National Research Council, F.lli Cervi 93, 20054 Segrate, Milan, Italy
- 245 10
- $a CoPPIs algorithm: a tool to unravel protein cooperative strategies in pathophysiological conditions / $c A. Lomagno, I. Yusuf, G. Tosadori, D. Bonanomi, P. Luigi Mauri, D. Di Silvestre
- 520 9_
- $a We present here the co-expressed protein-protein interactions algorithm. In addition to minimizing correlation-causality imbalance and contextualizing protein-protein interactions to the investigated systems, it combines protein-protein interactions and protein co-expression networks to identify differentially correlated functional modules. To test the algorithm, we processed a set of proteomic profiles from different brain regions of controls and subjects affected by idiopathic Parkinson's disease or carrying a GBA1 mutation. Its robustness was supported by the extraction of functional modules, related to translation and mitochondria, whose involvement in Parkinson's disease pathogenesis is well documented. Furthermore, the selection of hubs and bottlenecks from the weightedprotein-protein interactions networks provided molecular clues consistent with the Parkinson pathophysiology. Of note, like quantification, the algorithm revealed less variations when comparing disease groups than when comparing diseased and controls. However, correlation and quantification results showed low overlap, suggesting the complementarity of these measures. An observation that opens the way to a new investigation strategy that takes into account not only protein expression, but also the level of coordination among proteins that cooperate to perform a given function.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a algoritmy $7 D000465
- 650 12
- $a Parkinsonova nemoc $x metabolismus $x genetika $x patofyziologie $7 D010300
- 650 _2
- $a proteomika $x metody $7 D040901
- 650 _2
- $a mapy interakcí proteinů $7 D060066
- 650 _2
- $a glukosylceramidasa $x genetika $x metabolismus $7 D005962
- 650 12
- $a mapování interakce mezi proteiny $x metody $7 D025941
- 650 _2
- $a mozek $x metabolismus $7 D001921
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Yusuf, Ishak $u Clinical Proteomics Laboratory, Elixir Infrastructure, Institute for Biomedical Technologies - National Research Council, F.lli Cervi 93, 20054 Segrate, Milan, Italy
- 700 1_
- $a Tosadori, Gabriele $u Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14200 Praha 4, Czech Republic
- 700 1_
- $a Bonanomi, Dario $u Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Olgettina 60, 20132 Milan, Italy
- 700 1_
- $a Luigi Mauri, Pietro $u Clinical Proteomics Laboratory, Elixir Infrastructure, Institute for Biomedical Technologies - National Research Council, F.lli Cervi 93, 20054 Segrate, Milan, Italy $u Institute of Experimental Endocrinology and Oncology "G. Salvatore" - National Research Council, Pietro Castellino 111, 80131 Naples, Italy
- 700 1_
- $a Di Silvestre, Dario $u Clinical Proteomics Laboratory, Elixir Infrastructure, Institute for Biomedical Technologies - National Research Council, F.lli Cervi 93, 20054 Segrate, Milan, Italy $1 https://orcid.org/0000000271436229
- 773 0_
- $w MED00006943 $t Briefings in bioinformatics $x 1477-4054 $g Roč. 26, č. 2 (2025)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40194557 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250708 $b ABA008
- 991 __
- $a 20250731092838 $b ABA008
- 999 __
- $a ok $b bmc $g 2366900 $s 1253485
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 26 $c 2 $e 20250304 $i 1477-4054 $m Briefings in bioinformatics $n Brief Bioinform $x MED00006943
- GRA __
- $a 2022Z2TE5P $p PRIN2022
- GRA __
- $a P2022LY3F4 $p PRIN PNRR
- LZP __
- $a Pubmed-20250708