Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Automatic infant 2D pose estimation from videos: Comparing seven deep neural network methods

F. Gama, M. Mísař, L. Navara, S. T Popescu, M. Hoffmann

. 2025 ; 57 (10) : 280. [pub] 20250910

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/bmc25021601

Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts. This work tests and compares seven popular methods (AlphaPose, DeepLabCut/DeeperCut, Detectron2, HRNet, MediaPipe/BlazePose, OpenPose, and ViTPose) on videos of infants in supine position and in more complex settings. Surprisingly, all methods except DeepLabCut and MediaPipe exhibit competitive performance without additional fine-tuning, with ViTPose performing the best. Next to standard performance metrics (average precision and recall), we introduce errors expressed in the neck-mid-hip (torso length) ratio and additionally study missing and redundant detections, and the reliability of the internal confidence ratings of the different methods, which are relevant for downstream tasks. Among the networks with competitive performance, only AlphaPose could run at close to real-time speed (27 fps) on our machine. We provide documented Docker containers or instructions for all the methods we used, our analysis scripts, and the processed data at https://hub.docker.com/u/humanoidsctu and https://osf.io/x465b/ .

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25021601
003      
CZ-PrNML
005      
20251023075730.0
007      
ta
008      
251014s2025 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.3758/s13428-025-02816-x $2 doi
035    __
$a (PubMed)40931295
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Gama, Filipe $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Prague, Czech Republic
245    10
$a Automatic infant 2D pose estimation from videos: Comparing seven deep neural network methods / $c F. Gama, M. Mísař, L. Navara, S. T Popescu, M. Hoffmann
520    9_
$a Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts. This work tests and compares seven popular methods (AlphaPose, DeepLabCut/DeeperCut, Detectron2, HRNet, MediaPipe/BlazePose, OpenPose, and ViTPose) on videos of infants in supine position and in more complex settings. Surprisingly, all methods except DeepLabCut and MediaPipe exhibit competitive performance without additional fine-tuning, with ViTPose performing the best. Next to standard performance metrics (average precision and recall), we introduce errors expressed in the neck-mid-hip (torso length) ratio and additionally study missing and redundant detections, and the reliability of the internal confidence ratings of the different methods, which are relevant for downstream tasks. Among the networks with competitive performance, only AlphaPose could run at close to real-time speed (27 fps) on our machine. We provide documented Docker containers or instructions for all the methods we used, our analysis scripts, and the processed data at https://hub.docker.com/u/humanoidsctu and https://osf.io/x465b/ .
650    _2
$a lidé $7 D006801
650    _2
$a kojenec $7 D007223
650    12
$a neuronové sítě $7 D016571
650    12
$a audiovizuální záznam $x metody $7 D014741
650    12
$a postura těla $x fyziologie $7 D011187
650    12
$a deep learning $7 D000077321
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    12
$a počítačové zpracování obrazu $x metody $7 D007091
655    _2
$a časopisecké články $7 D016428
655    _2
$a srovnávací studie $7 D003160
700    1_
$a Mísař, Matěj $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Prague, Czech Republic
700    1_
$a Navara, Lukáš $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Prague, Czech Republic
700    1_
$a T Popescu, Sergiu $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Prague, Czech Republic
700    1_
$a Hoffmann, Matej $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Prague, Czech Republic. matej.hoffmann@fel.cvut.cz
773    0_
$w MED00008758 $t Behavior research methods $x 1554-3528 $g Roč. 57, č. 10 (2025), s. 280
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40931295 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20251014 $b ABA008
991    __
$a 20251023075735 $b ABA008
999    __
$a ok $b bmc $g 2416801 $s 1259764
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 57 $c 10 $d 280 $e 20250910 $i 1554-3528 $m Behavior research methods $n Behav Res Methods $x MED00008758
LZP    __
$a Pubmed-20251014

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...