-
Je něco špatně v tomto záznamu ?
Automatic infant 2D pose estimation from videos: Comparing seven deep neural network methods
F. Gama, M. Mísař, L. Navara, S. T Popescu, M. Hoffmann
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, srovnávací studie
NLK
Free Medical Journals
od 2005
Medline Complete (EBSCOhost)
od 2011-06-01 do Před 1 rokem
- MeSH
- audiovizuální záznam * metody MeSH
- deep learning * MeSH
- kojenec MeSH
- lidé MeSH
- neuronové sítě * MeSH
- počítačové zpracování obrazu * metody MeSH
- postura těla * fyziologie MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts. This work tests and compares seven popular methods (AlphaPose, DeepLabCut/DeeperCut, Detectron2, HRNet, MediaPipe/BlazePose, OpenPose, and ViTPose) on videos of infants in supine position and in more complex settings. Surprisingly, all methods except DeepLabCut and MediaPipe exhibit competitive performance without additional fine-tuning, with ViTPose performing the best. Next to standard performance metrics (average precision and recall), we introduce errors expressed in the neck-mid-hip (torso length) ratio and additionally study missing and redundant detections, and the reliability of the internal confidence ratings of the different methods, which are relevant for downstream tasks. Among the networks with competitive performance, only AlphaPose could run at close to real-time speed (27 fps) on our machine. We provide documented Docker containers or instructions for all the methods we used, our analysis scripts, and the processed data at https://hub.docker.com/u/humanoidsctu and https://osf.io/x465b/ .
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25021601
- 003
- CZ-PrNML
- 005
- 20251023075730.0
- 007
- ta
- 008
- 251014s2025 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3758/s13428-025-02816-x $2 doi
- 035 __
- $a (PubMed)40931295
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Gama, Filipe $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Prague, Czech Republic
- 245 10
- $a Automatic infant 2D pose estimation from videos: Comparing seven deep neural network methods / $c F. Gama, M. Mísař, L. Navara, S. T Popescu, M. Hoffmann
- 520 9_
- $a Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts. This work tests and compares seven popular methods (AlphaPose, DeepLabCut/DeeperCut, Detectron2, HRNet, MediaPipe/BlazePose, OpenPose, and ViTPose) on videos of infants in supine position and in more complex settings. Surprisingly, all methods except DeepLabCut and MediaPipe exhibit competitive performance without additional fine-tuning, with ViTPose performing the best. Next to standard performance metrics (average precision and recall), we introduce errors expressed in the neck-mid-hip (torso length) ratio and additionally study missing and redundant detections, and the reliability of the internal confidence ratings of the different methods, which are relevant for downstream tasks. Among the networks with competitive performance, only AlphaPose could run at close to real-time speed (27 fps) on our machine. We provide documented Docker containers or instructions for all the methods we used, our analysis scripts, and the processed data at https://hub.docker.com/u/humanoidsctu and https://osf.io/x465b/ .
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a kojenec $7 D007223
- 650 12
- $a neuronové sítě $7 D016571
- 650 12
- $a audiovizuální záznam $x metody $7 D014741
- 650 12
- $a postura těla $x fyziologie $7 D011187
- 650 12
- $a deep learning $7 D000077321
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 12
- $a počítačové zpracování obrazu $x metody $7 D007091
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a srovnávací studie $7 D003160
- 700 1_
- $a Mísař, Matěj $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Prague, Czech Republic
- 700 1_
- $a Navara, Lukáš $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Prague, Czech Republic
- 700 1_
- $a T Popescu, Sergiu $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Prague, Czech Republic
- 700 1_
- $a Hoffmann, Matej $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Prague, Czech Republic. matej.hoffmann@fel.cvut.cz
- 773 0_
- $w MED00008758 $t Behavior research methods $x 1554-3528 $g Roč. 57, č. 10 (2025), s. 280
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40931295 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20251014 $b ABA008
- 991 __
- $a 20251023075735 $b ABA008
- 999 __
- $a ok $b bmc $g 2416801 $s 1259764
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 57 $c 10 $d 280 $e 20250910 $i 1554-3528 $m Behavior research methods $n Behav Res Methods $x MED00008758
- LZP __
- $a Pubmed-20251014