Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Effect of discontinuing antipsychotic medications on the risk of hospitalization in long-term care: a machine learning-based analysis

M. Nuutinen, RL. Leskelä, D. Fialova, I. Haavisto, H. Finne-Soveri, J. Häsä, J. Edgren, H. van Hout, DE. da Cunha Leme, JP. Hirdes, G. Onder, R. Liperoti

. 2025 ; 23 (1) : 484. [pub] 20250820

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25021973

Grantová podpora
I-CARE4OLD project 965341 Horizon 2020
I-CARE4OLD project 965341 Horizon 2020
I-CARE4OLD project 965341 Horizon 2020
I-CARE4OLD project 965341 Horizon 2020
I-CARE4OLD project 965341 Horizon 2020
I-CARE4OLD project 965341 Horizon 2020
I-CARE4OLD project 965341 Horizon 2020
I-CARE4OLD project 965341 Horizon 2020
I-CARE4OLD project 965341 Horizon 2020
I-CARE4OLD project 965341 Horizon 2020
I-CARE4OLD project 965341 Horizon 2020
I-CARE4OLD project 965341 Horizon 2020
CZ.02.01.01/00/22_008/0004607 NETPHARM project

BACKGROUND: Antipsychotic medications are frequently prescribed to older residents of long-term care facilities (LTCFs) despite their limited efficacy and considerable safety risks. While discontinuation of these drugs might help reduce their associated morbidity, the impact of stopping antipsychotics on the risk of hospitalization has not been studied yet. The study aimed at estimating the effect of antipsychotic discontinuation on the risk of hospitalization in older LTCF residents and at identifying relevant factors influencing such effect. METHODS: For this registry-based retrospective cohort study, data from a cohort of older LTCF residents in Finland from the years 2014 to 2018 was analyzed. Data sources were the Resident Assessment Instrument for Long-Term Care (RAI-LTC) based comprehensive geriatric assessments and the Finnish Care Register for Health Care. For the initial cohort, 5467 users of antipsychotic medications with at least four assessments, each conducted 6 months apart, were selected. Residents were defined either as discontinuing, if antipsychotics were prescribed at the first two assessments but not at the last two, or as chronic users, if antipsychotics were prescribed at all four assessments. Causal machine learning (ML) methods including double machine learning (DML), double robust (DR), X-learner, and causal forest (CF) were applied to estimate the effect of antipsychotic discontinuation on the risk of hospitalization and to identify factors influencing such effect. The follow-up time was 1 year. The methods of SHAP values (SHapley Additive exPlanations), partial dependence plots (PDP), and surrogate models were used for model interpretation. RESULTS: Nearly 43% of residents in the study discontinued antipsychotic medications. Antipsychotic discontinuation lowered the probability of hospitalization of about 12% (average treatment effect, ATE). The individual treatment effect (ITE) estimations ranged from - 30% to + 1%. The use of restraints, age, and functional impairment were relevant variables in all ITE models in influencing the predicted ITE. CONCLUSIONS: Antipsychotic discontinuation may decrease the likelihood of hospitalization among older LTCF residents, benefiting most users of these drugs. Promoting antipsychotic discontinuation may prevent hospitalizations and reduce morbidity and mortality in long-term care.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25021973
003      
CZ-PrNML
005      
20251023080000.0
007      
ta
008      
251014s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12916-025-04304-7 $2 doi
035    __
$a (PubMed)40830460
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Nuutinen, Mikko $u Nordic Healthcare Group, Helsinki, Finland $u Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
245    10
$a Effect of discontinuing antipsychotic medications on the risk of hospitalization in long-term care: a machine learning-based analysis / $c M. Nuutinen, RL. Leskelä, D. Fialova, I. Haavisto, H. Finne-Soveri, J. Häsä, J. Edgren, H. van Hout, DE. da Cunha Leme, JP. Hirdes, G. Onder, R. Liperoti
520    9_
$a BACKGROUND: Antipsychotic medications are frequently prescribed to older residents of long-term care facilities (LTCFs) despite their limited efficacy and considerable safety risks. While discontinuation of these drugs might help reduce their associated morbidity, the impact of stopping antipsychotics on the risk of hospitalization has not been studied yet. The study aimed at estimating the effect of antipsychotic discontinuation on the risk of hospitalization in older LTCF residents and at identifying relevant factors influencing such effect. METHODS: For this registry-based retrospective cohort study, data from a cohort of older LTCF residents in Finland from the years 2014 to 2018 was analyzed. Data sources were the Resident Assessment Instrument for Long-Term Care (RAI-LTC) based comprehensive geriatric assessments and the Finnish Care Register for Health Care. For the initial cohort, 5467 users of antipsychotic medications with at least four assessments, each conducted 6 months apart, were selected. Residents were defined either as discontinuing, if antipsychotics were prescribed at the first two assessments but not at the last two, or as chronic users, if antipsychotics were prescribed at all four assessments. Causal machine learning (ML) methods including double machine learning (DML), double robust (DR), X-learner, and causal forest (CF) were applied to estimate the effect of antipsychotic discontinuation on the risk of hospitalization and to identify factors influencing such effect. The follow-up time was 1 year. The methods of SHAP values (SHapley Additive exPlanations), partial dependence plots (PDP), and surrogate models were used for model interpretation. RESULTS: Nearly 43% of residents in the study discontinued antipsychotic medications. Antipsychotic discontinuation lowered the probability of hospitalization of about 12% (average treatment effect, ATE). The individual treatment effect (ITE) estimations ranged from - 30% to + 1%. The use of restraints, age, and functional impairment were relevant variables in all ITE models in influencing the predicted ITE. CONCLUSIONS: Antipsychotic discontinuation may decrease the likelihood of hospitalization among older LTCF residents, benefiting most users of these drugs. Promoting antipsychotic discontinuation may prevent hospitalizations and reduce morbidity and mortality in long-term care.
650    _2
$a lidé $7 D006801
650    12
$a antipsychotika $x terapeutické užití $x aplikace a dávkování $x škodlivé účinky $7 D014150
650    12
$a strojové učení $7 D000069550
650    _2
$a retrospektivní studie $7 D012189
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a mužské pohlaví $7 D008297
650    12
$a dlouhodobá péče $x statistika a číselné údaje $7 D008134
650    12
$a hospitalizace $x statistika a číselné údaje $7 D006760
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a registrace $7 D012042
651    _2
$a Finsko $7 D005387
655    _2
$a časopisecké články $7 D016428
700    1_
$a Leskelä, Riikka-Leena $u Nordic Healthcare Group, Helsinki, Finland
700    1_
$a Fialova, Daniela $u Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic $u Department of Geriatrics and Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Haavisto, Ira $u Nordic Healthcare Group, Helsinki, Finland
700    1_
$a Finne-Soveri, Harriet $u Finnish Institute for Health and Welfare, Helsinki, Finland
700    1_
$a Häsä, Jokke $u Finnish Institute for Health and Welfare, Helsinki, Finland
700    1_
$a Edgren, Johanna $u Finnish Institute for Health and Welfare, Helsinki, Finland
700    1_
$a van Hout, Hein $u VUMC - University Medical Center Amsterdam, Amsterdam, The Netherlands
700    1_
$a da Cunha Leme, Daniel E $u School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
700    1_
$a Hirdes, John P $u School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
700    1_
$a Onder, Graziano $u Università Cattolica del Sacro Cuore, Rome, Italy $u Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
700    1_
$a Liperoti, Rosa $u Università Cattolica del Sacro Cuore, Rome, Italy. rosa.liperoti@unicatt.it $u Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy. rosa.liperoti@unicatt.it $1 https://orcid.org/0000000337401687
773    0_
$w MED00008190 $t BMC medicine $x 1741-7015 $g Roč. 23, č. 1 (2025), s. 484
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40830460 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20251014 $b ABA008
991    __
$a 20251023080006 $b ABA008
999    __
$a ok $b bmc $g 2417033 $s 1260136
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 23 $c 1 $d 484 $e 20250820 $i 1741-7015 $m BMC medicine $n BMC Med $x MED00008190
GRA    __
$a I-CARE4OLD project 965341 $p Horizon 2020
GRA    __
$a I-CARE4OLD project 965341 $p Horizon 2020
GRA    __
$a I-CARE4OLD project 965341 $p Horizon 2020
GRA    __
$a I-CARE4OLD project 965341 $p Horizon 2020
GRA    __
$a I-CARE4OLD project 965341 $p Horizon 2020
GRA    __
$a I-CARE4OLD project 965341 $p Horizon 2020
GRA    __
$a I-CARE4OLD project 965341 $p Horizon 2020
GRA    __
$a I-CARE4OLD project 965341 $p Horizon 2020
GRA    __
$a I-CARE4OLD project 965341 $p Horizon 2020
GRA    __
$a I-CARE4OLD project 965341 $p Horizon 2020
GRA    __
$a I-CARE4OLD project 965341 $p Horizon 2020
GRA    __
$a I-CARE4OLD project 965341 $p Horizon 2020
GRA    __
$a CZ.02.01.01/00/22_008/0004607 $p NETPHARM project
LZP    __
$a Pubmed-20251014

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...