-
Je něco špatně v tomto záznamu ?
Effect of discontinuing antipsychotic medications on the risk of hospitalization in long-term care: a machine learning-based analysis
M. Nuutinen, RL. Leskelä, D. Fialova, I. Haavisto, H. Finne-Soveri, J. Häsä, J. Edgren, H. van Hout, DE. da Cunha Leme, JP. Hirdes, G. Onder, R. Liperoti
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
Grantová podpora
I-CARE4OLD project 965341
Horizon 2020
I-CARE4OLD project 965341
Horizon 2020
I-CARE4OLD project 965341
Horizon 2020
I-CARE4OLD project 965341
Horizon 2020
I-CARE4OLD project 965341
Horizon 2020
I-CARE4OLD project 965341
Horizon 2020
I-CARE4OLD project 965341
Horizon 2020
I-CARE4OLD project 965341
Horizon 2020
I-CARE4OLD project 965341
Horizon 2020
I-CARE4OLD project 965341
Horizon 2020
I-CARE4OLD project 965341
Horizon 2020
I-CARE4OLD project 965341
Horizon 2020
CZ.02.01.01/00/22_008/0004607
NETPHARM project
NLK
BioMedCentral
od 2003-01-12
BioMedCentral Open Access
od 2003
Directory of Open Access Journals
od 2003
Free Medical Journals
od 2003
PubMed Central
od 2003
Europe PubMed Central
od 2003
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2003-11-01
Open Access Digital Library
od 2003-01-01
Open Access Digital Library
od 2003-01-01
Medline Complete (EBSCOhost)
od 2003-11-24
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2003
Springer Nature OA/Free Journals
od 2003-12-01
- MeSH
- antipsychotika * terapeutické užití aplikace a dávkování škodlivé účinky MeSH
- dlouhodobá péče * statistika a číselné údaje MeSH
- hospitalizace * statistika a číselné údaje MeSH
- lidé MeSH
- registrace MeSH
- retrospektivní studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- strojové učení * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Finsko MeSH
BACKGROUND: Antipsychotic medications are frequently prescribed to older residents of long-term care facilities (LTCFs) despite their limited efficacy and considerable safety risks. While discontinuation of these drugs might help reduce their associated morbidity, the impact of stopping antipsychotics on the risk of hospitalization has not been studied yet. The study aimed at estimating the effect of antipsychotic discontinuation on the risk of hospitalization in older LTCF residents and at identifying relevant factors influencing such effect. METHODS: For this registry-based retrospective cohort study, data from a cohort of older LTCF residents in Finland from the years 2014 to 2018 was analyzed. Data sources were the Resident Assessment Instrument for Long-Term Care (RAI-LTC) based comprehensive geriatric assessments and the Finnish Care Register for Health Care. For the initial cohort, 5467 users of antipsychotic medications with at least four assessments, each conducted 6 months apart, were selected. Residents were defined either as discontinuing, if antipsychotics were prescribed at the first two assessments but not at the last two, or as chronic users, if antipsychotics were prescribed at all four assessments. Causal machine learning (ML) methods including double machine learning (DML), double robust (DR), X-learner, and causal forest (CF) were applied to estimate the effect of antipsychotic discontinuation on the risk of hospitalization and to identify factors influencing such effect. The follow-up time was 1 year. The methods of SHAP values (SHapley Additive exPlanations), partial dependence plots (PDP), and surrogate models were used for model interpretation. RESULTS: Nearly 43% of residents in the study discontinued antipsychotic medications. Antipsychotic discontinuation lowered the probability of hospitalization of about 12% (average treatment effect, ATE). The individual treatment effect (ITE) estimations ranged from - 30% to + 1%. The use of restraints, age, and functional impairment were relevant variables in all ITE models in influencing the predicted ITE. CONCLUSIONS: Antipsychotic discontinuation may decrease the likelihood of hospitalization among older LTCF residents, benefiting most users of these drugs. Promoting antipsychotic discontinuation may prevent hospitalizations and reduce morbidity and mortality in long-term care.
Finnish Institute for Health and Welfare Helsinki Finland
Fondazione Policlinico Universitario A Gemelli IRCCS Rome Italy
Nordic Healthcare Group Helsinki Finland
School of Public Health Sciences University of Waterloo Waterloo ON Canada
Università Cattolica del Sacro Cuore Rome Italy
VUMC University Medical Center Amsterdam Amsterdam The Netherlands
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25021973
- 003
- CZ-PrNML
- 005
- 20251023080000.0
- 007
- ta
- 008
- 251014s2025 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s12916-025-04304-7 $2 doi
- 035 __
- $a (PubMed)40830460
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Nuutinen, Mikko $u Nordic Healthcare Group, Helsinki, Finland $u Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- 245 10
- $a Effect of discontinuing antipsychotic medications on the risk of hospitalization in long-term care: a machine learning-based analysis / $c M. Nuutinen, RL. Leskelä, D. Fialova, I. Haavisto, H. Finne-Soveri, J. Häsä, J. Edgren, H. van Hout, DE. da Cunha Leme, JP. Hirdes, G. Onder, R. Liperoti
- 520 9_
- $a BACKGROUND: Antipsychotic medications are frequently prescribed to older residents of long-term care facilities (LTCFs) despite their limited efficacy and considerable safety risks. While discontinuation of these drugs might help reduce their associated morbidity, the impact of stopping antipsychotics on the risk of hospitalization has not been studied yet. The study aimed at estimating the effect of antipsychotic discontinuation on the risk of hospitalization in older LTCF residents and at identifying relevant factors influencing such effect. METHODS: For this registry-based retrospective cohort study, data from a cohort of older LTCF residents in Finland from the years 2014 to 2018 was analyzed. Data sources were the Resident Assessment Instrument for Long-Term Care (RAI-LTC) based comprehensive geriatric assessments and the Finnish Care Register for Health Care. For the initial cohort, 5467 users of antipsychotic medications with at least four assessments, each conducted 6 months apart, were selected. Residents were defined either as discontinuing, if antipsychotics were prescribed at the first two assessments but not at the last two, or as chronic users, if antipsychotics were prescribed at all four assessments. Causal machine learning (ML) methods including double machine learning (DML), double robust (DR), X-learner, and causal forest (CF) were applied to estimate the effect of antipsychotic discontinuation on the risk of hospitalization and to identify factors influencing such effect. The follow-up time was 1 year. The methods of SHAP values (SHapley Additive exPlanations), partial dependence plots (PDP), and surrogate models were used for model interpretation. RESULTS: Nearly 43% of residents in the study discontinued antipsychotic medications. Antipsychotic discontinuation lowered the probability of hospitalization of about 12% (average treatment effect, ATE). The individual treatment effect (ITE) estimations ranged from - 30% to + 1%. The use of restraints, age, and functional impairment were relevant variables in all ITE models in influencing the predicted ITE. CONCLUSIONS: Antipsychotic discontinuation may decrease the likelihood of hospitalization among older LTCF residents, benefiting most users of these drugs. Promoting antipsychotic discontinuation may prevent hospitalizations and reduce morbidity and mortality in long-term care.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a antipsychotika $x terapeutické užití $x aplikace a dávkování $x škodlivé účinky $7 D014150
- 650 12
- $a strojové učení $7 D000069550
- 650 _2
- $a retrospektivní studie $7 D012189
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 12
- $a dlouhodobá péče $x statistika a číselné údaje $7 D008134
- 650 12
- $a hospitalizace $x statistika a číselné údaje $7 D006760
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a senioři nad 80 let $7 D000369
- 650 _2
- $a registrace $7 D012042
- 651 _2
- $a Finsko $7 D005387
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Leskelä, Riikka-Leena $u Nordic Healthcare Group, Helsinki, Finland
- 700 1_
- $a Fialova, Daniela $u Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic $u Department of Geriatrics and Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
- 700 1_
- $a Haavisto, Ira $u Nordic Healthcare Group, Helsinki, Finland
- 700 1_
- $a Finne-Soveri, Harriet $u Finnish Institute for Health and Welfare, Helsinki, Finland
- 700 1_
- $a Häsä, Jokke $u Finnish Institute for Health and Welfare, Helsinki, Finland
- 700 1_
- $a Edgren, Johanna $u Finnish Institute for Health and Welfare, Helsinki, Finland
- 700 1_
- $a van Hout, Hein $u VUMC - University Medical Center Amsterdam, Amsterdam, The Netherlands
- 700 1_
- $a da Cunha Leme, Daniel E $u School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
- 700 1_
- $a Hirdes, John P $u School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
- 700 1_
- $a Onder, Graziano $u Università Cattolica del Sacro Cuore, Rome, Italy $u Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- 700 1_
- $a Liperoti, Rosa $u Università Cattolica del Sacro Cuore, Rome, Italy. rosa.liperoti@unicatt.it $u Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy. rosa.liperoti@unicatt.it $1 https://orcid.org/0000000337401687
- 773 0_
- $w MED00008190 $t BMC medicine $x 1741-7015 $g Roč. 23, č. 1 (2025), s. 484
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40830460 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20251014 $b ABA008
- 991 __
- $a 20251023080006 $b ABA008
- 999 __
- $a ok $b bmc $g 2417033 $s 1260136
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 23 $c 1 $d 484 $e 20250820 $i 1741-7015 $m BMC medicine $n BMC Med $x MED00008190
- GRA __
- $a I-CARE4OLD project 965341 $p Horizon 2020
- GRA __
- $a I-CARE4OLD project 965341 $p Horizon 2020
- GRA __
- $a I-CARE4OLD project 965341 $p Horizon 2020
- GRA __
- $a I-CARE4OLD project 965341 $p Horizon 2020
- GRA __
- $a I-CARE4OLD project 965341 $p Horizon 2020
- GRA __
- $a I-CARE4OLD project 965341 $p Horizon 2020
- GRA __
- $a I-CARE4OLD project 965341 $p Horizon 2020
- GRA __
- $a I-CARE4OLD project 965341 $p Horizon 2020
- GRA __
- $a I-CARE4OLD project 965341 $p Horizon 2020
- GRA __
- $a I-CARE4OLD project 965341 $p Horizon 2020
- GRA __
- $a I-CARE4OLD project 965341 $p Horizon 2020
- GRA __
- $a I-CARE4OLD project 965341 $p Horizon 2020
- GRA __
- $a CZ.02.01.01/00/22_008/0004607 $p NETPHARM project
- LZP __
- $a Pubmed-20251014