Catabolite repression during single and multiple induction in Escherichia coli
Language English Country United States Media print
Document type Journal Article
PubMed
6259031
DOI
10.1007/bf02927215
Knihovny.cz E-resources
- MeSH
- Cyclic AMP pharmacology MeSH
- Asparaginase biosynthesis MeSH
- beta-Galactosidase biosynthesis MeSH
- Enzyme Induction drug effects MeSH
- Enzyme Repression * drug effects MeSH
- Escherichia coli enzymology MeSH
- Indoleamine-Pyrrole 2,3,-Dioxygenase MeSH
- L-Serine Dehydratase biosynthesis MeSH
- Malate Dehydrogenase biosynthesis MeSH
- Tryptophanase biosynthesis MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cyclic AMP MeSH
- Asparaginase MeSH
- beta-Galactosidase MeSH
- Indoleamine-Pyrrole 2,3,-Dioxygenase MeSH
- L-Serine Dehydratase MeSH
- Malate Dehydrogenase MeSH
- Tryptophanase MeSH
Intracellular concentration of cAMP regulates the synthesis of enzymes sensitive to catabolite repression. The relationship between the single and multiple induction of beta-galactosidase (EC 3.2.1.23), L-tryptophanase (EC 4.1.99.1), D-serine deaminase (EC 4.2.1.14), L-asparaginase (EC 3.5.1.1) and L-malate dehydrogenase (EC 1.1.1.37) was studied and the effect of cAMP level on the induction in Escherichia coli Crookes (ATCC 8739) was investigated. A varying degree of catabolite repression was observed during induction of individual enzymes induced separately on different energy sources. The synthesis of l-tryptophanase was most sensitive, whereas l-asparaginase was not influenced at all. Exogenous cAMP was found to overcome partially the catabolite repression of beta-galactosidase and D-serine deaminase, both during single induction. The synthesis of l-malate dehydrogenase was negatively influenced by the multiple induction even in the presence of cAMP; on the other hand, the synthesis of l-tryptophanase was stimulated, independently of the level of the exogenous cAMP. Similarly, the activity of L-asparaginase slightly but significantly increased during the multiple induction of all five enzymes; here too the activity increase did not depend on exogenous cAMP.
See more in PubMed
Biochim Biophys Acta. 1951 Nov;7(4):585-99 PubMed
J Biol Chem. 1971 Oct 25;246(20):6288-96 PubMed
Biochem Biophys Res Commun. 1975 Jan 2;64(3):845-50 PubMed
J Gen Microbiol. 1976 Jan;92(1):125-32 PubMed
J Bacteriol. 1973 Jun;114(3):1068-73 PubMed
J Bacteriol. 1977 Feb;129(2):948-58 PubMed
J Bacteriol. 1974 Nov;120(2):980-3 PubMed
FEBS Lett. 1968 Nov;2(1):57-60 PubMed
Biochemistry. 1975 May 6;14(9):1821-5 PubMed
Proc Natl Acad Sci U S A. 1970 Jun;66(2):480-7 PubMed
J Biol Chem. 1968 Oct 25;243(20):5420-7 PubMed
Biochem Biophys Res Commun. 1968 May 23;31(4):603-8 PubMed
Folia Microbiol (Praha). 1976;21(6):431-7 PubMed
Biochem Biophys Res Commun. 1967 Nov 17;29(3):303-10 PubMed
Proc Natl Acad Sci U S A. 1975 Jun;72(6):2300-4 PubMed
J Mol Biol. 1964 Nov;10:303-18 PubMed
Proc Natl Acad Sci U S A. 1970 May;66(1):104-10 PubMed
J Gen Microbiol. 1976 Jan;92(1):133-7 PubMed
J Biol Chem. 1974 Jul 10;249(13):4329-31 PubMed
Folia Microbiol (Praha). 1977;22(4):241-7 PubMed
J Mol Biol. 1964 Sep;9:746-53 PubMed
J Biol Chem. 1976 Feb 10;251(3):883-92 PubMed
Biochem Biophys Res Commun. 1969 Sep 24;37(1):151-7 PubMed
J Biol Chem. 1951 Nov;193(1):265-75 PubMed
J Biol Chem. 1969 Nov 10;244(21):5828-35 PubMed
J Biol Chem. 1965 Mar;240:1309-14 PubMed
J Mol Biol. 1973 Sep 5;79(1):149-62 PubMed
Biochim Biophys Acta. 1976 Feb 18;425(1):110-4 PubMed
Biochem Biophys Res Commun. 1969 May 22;35(4):486-91 PubMed
J Bacteriol. 1974 Apr;118(1):53-8 PubMed
Mol Gen Genet. 1976 Oct 18;148(1):49-55 PubMed