Presynaptic muscarinic receptors and the release of acetylcholine from cerebrocortical prisms: roles of Ca2+ and K+ concentrations

. 1993 Sep ; 348 (3) : 228-33.

Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid08232600

The mechanism by which presynaptic muscarinic autoreceptors inhibit the release of acetylcholine (ACh) from cerebrocortical cholinergic fibres has not been clarified. To test the view that muscarinic autoreceptors act by decreasing Ca2+ influx, we performed experiments in which rat cerebrocortical prisms were preloaded with (14C)choline, washed, depolarized with 14-65 mM K+ in the absence of Ca2+ and then exposed (still under depolarization) to various concentrations of Ca2+ to evoke the release of (14C)ACh. The muscarinic agonist, oxotremorine, used at a 100 microM concentration, inhibited the release of (14C)ACh by 59-86% in experiments with 14 and 26.5 mM K+ but had no significant effect at 65.5 mM K+. No systematic changes in the inhibitory effects of oxotremorine could be found at any of the K+ concentrations used when the concentration of Ca2+ was varied in the range of 0.25-4.0 mM. At 2 mM Ca2+ and K+ concentrations above 14 mM, the inhibitory effect of oxotremorine was inversely related to the concentration of K+. The inhibitory effect of oxotremorine on (14C)ACh release was not blocked by 100 microM 4-amino-pyridine. The fact that the inhibitory effect of oxotremorine could not be overcome by an increase in the concentration of Ca2+ suggests that, under the conditions used, a restriction of the influx of Ca2+ did not play a major role in the muscarinic inhibition of ACh release; rather, oxotremorine appeared to act by decreasing membrane depolarization.2+ of the Ca(2+)-voltage hypothesis of neurotransmitter release, supposing

Zobrazit více v PubMed

FASEB J. 1990 Dec;4(15):3291-9 PubMed

Neuroscience. 1990;37(1):1-9 PubMed

J Physiol. 1991 Jan;432:327-41 PubMed

J Pharmacol Exp Ther. 1984 Apr;229(1):98-104 PubMed

Acta Physiol Scand. 1982 Aug;115(4):487-91 PubMed

Brain Res. 1980 Jan 20;182(1):137-44 PubMed

J Neurochem. 1990 Sep;55(3):1008-12 PubMed

Physiol Rev. 1989 Jul;69(3):864-989 PubMed

Cell Mol Neurobiol. 1988 Mar;8(1):105-14 PubMed

Naunyn Schmiedebergs Arch Pharmacol. 1977 Nov;300(2):145-51 PubMed

Proc Natl Acad Sci U S A. 1987 Jun;84(12):4313-7 PubMed

Neurochem Res. 1990 Jan;15(1):41-5 PubMed

Eur J Pharmacol. 1987 Jan 13;133(2):225-34 PubMed

Trends Pharmacol Sci. 1988 Apr;9(4):130-4 PubMed

J Physiol. 1988 Jan;395:441-53 PubMed

J Pharmacol Exp Ther. 1991 Sep;258(3):762-6 PubMed

Anal Biochem. 1977 Dec;83(2):346-56 PubMed

Eur J Neurosci. 1989 Mar;1(2):127-131 PubMed

Brain Res. 1981 Jun 1;213(2):467-71 PubMed

J Neurosci. 1985 May;5(5):1202-7 PubMed

Neurochem Res. 1986 Nov;11(11):1547-56 PubMed

J Neurosci Res. 1990 Oct;27(2):228-32 PubMed

Eur J Pharmacol. 1981 Jul 17;73(1):75-9 PubMed

Acta Physiol Scand. 1980 Apr;108(4):347-53 PubMed

J Neurochem. 1990 Dec;55(6):2086-90 PubMed

J Physiol (Paris). 1986;81(4):289-305 PubMed

J Physiol. 1985 Nov;368:293-307 PubMed

J Neurochem. 1990 Apr;54(4):1386-90 PubMed

Naunyn Schmiedebergs Arch Pharmacol. 1987 Jun;335(6):597-604 PubMed

Br J Pharmacol. 1974 Dec;52(4):499-507 PubMed

Naunyn Schmiedebergs Arch Pharmacol. 1977 Sep;299(2):115-22 PubMed

J Physiol. 1982 Aug;329:93-112 PubMed

J Physiol. 1981 Aug;317:519-35 PubMed

J Physiol. 1986 Mar;372:363-77 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...