Purification and properties of two forms of glucoamylase from Aspergillus niger
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
9138312
DOI
10.1007/bf02814694
Knihovny.cz E-zdroje
- MeSH
- amylopektin metabolismus MeSH
- amylosa metabolismus MeSH
- Aspergillus niger enzymologie MeSH
- chromatografie iontoměničová MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- gelová chromatografie MeSH
- glukoamylasa izolace a purifikace metabolismus MeSH
- isoelektrická fokusace MeSH
- izoelektrický bod MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- škrob metabolismus MeSH
- vytápění MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amylopektin MeSH
- amylosa MeSH
- glukoamylasa MeSH
- škrob MeSH
A. niger produced alpha-glucosidase, alpha-amylase and two forms of glucoamylase when grown in a liquid medium containing raw tapioca starch as the carbon source. The glucoamylases, which formed the dominant components of amylolytic activity manifested by the organism, were purified to homogeneity by ammonium sulfate precipitation, ion-exchange and two cycles of gel filtration chromatography. The purified enzymes, designated GA1 and GA2, a raw starch digesting glucoamylase, were found to have molar masses of 74 and 96 kDa and isoelectric points of 3.8 and 3.95, respectively. The enzymes were found to have pH optimum of 4.2 and 4.5 for GA1 and GA2, respectively, and were both stable in a pH range of 3.5-9.0. Both enzymes were thermophilic in nature with temperature optimum of 60 and 65 degrees C, respectively, and were stable for 1 h at temperatures of up to 60 degrees C. The kinetic parameters Km and V showed that with both enzymes the branched substrates, starch and amylopectin, were more efficiently hydrolyzed compared to amylose. GA2, the more active of the two glucoamylases produced, was approximately six to thirteen times more active towards raw starches compared to GA1.
Zobrazit více v PubMed
Anal Biochem. 1984 Nov 1;142(2):421-36 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed
Appl Environ Microbiol. 1983 Mar;45(3):905-12 PubMed
Biotechnol Bioeng. 1989 Jan 5;33(1):72-8 PubMed
Arch Biochem Biophys. 1969 Nov;134(2):539-53 PubMed
Biochemistry. 1971 Jun 22;10(13):2606-17 PubMed
Folia Microbiol (Praha). 1994;39(5):392-8 PubMed
Ann N Y Acad Sci. 1964 Dec 28;121:404-27 PubMed
Indian J Exp Biol. 1977 Jun;15(6):495-6 PubMed
J Biochem. 1981 Jan;89(1):125-34 PubMed
J Biochem. 1978 Nov;84(5):1183-94 PubMed