Adaptive classification of two-dimensional gel electrophoretic spot patterns by neural networks and cluster analysis
Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
9504806
DOI
10.1002/elps.1150181508
Knihovny.cz E-zdroje
- MeSH
- 2D gelová elektroforéza * MeSH
- interpretace statistických dat * MeSH
- multivariační analýza MeSH
- neuronové sítě * MeSH
- reprodukovatelnost výsledků MeSH
- shluková analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The interpretation of two-dimensional gel electrophoresis spot profiles can be facilitated by statistical and machine learning programs. Two different approaches to classification of spot profiles - cluster analysis and neural networks - are discussed. Neural networks for two different model patterns were designed and an algorithm for training of the net for the classification was developed. It was shown that the performance of neural networks is higher compared to cluster and principal component analysis. The possibility of combining both approaches into one process can increase reliability and speed of classification. Artificially created training sets with added random noise can be used for network training. The analysis was applied on the Streptomyces coelicolor developmental two-dimensional (2-D) gel database.
Citace poskytuje Crossref.org