Interaction of vaccinia virus with the actin cytoskeleton
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
9717258
DOI
10.1007/bf02818616
Knihovny.cz E-zdroje
- MeSH
- aktiny fyziologie MeSH
- cytoskelet virologie MeSH
- HeLa buňky MeSH
- lidé MeSH
- vakcínie virologie MeSH
- virus vakcinie fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- aktiny MeSH
Vaccinia virus infection results in large rearrangements of the host actin cytoskeleton including the formation of actin tails that are strikingly similar to those seen in Listeria, Shigella and Rickettsia infections. Using actin polymerization as the driving force the intracellular enveloped form of the vaccinia virus (IEV) is propelled on the tip of actin tails at a speed of 2.8 microns/min, both intra- and intercellularly. The similarities between the actin-based motility of the vaccinia virus, Listeria, Shigella and Rickettsia suggest that intracellular pathogens have developed a common strategy to exploit the actin cytoskeleton of the host to facilitate their intercellular spread. This review focuses on our current understanding of the interactions between the vaccinia virus and the actin cytoskeleton.
Zobrazit více v PubMed
J Virol. 1991 Nov;65(11):6101-10 PubMed
Curr Opin Cell Biol. 1997 Feb;9(1):62-9 PubMed
Virology. 1979 Oct 15;98(1):142-53 PubMed
Virology. 1985 Apr 30;142(2):317-25 PubMed
J Virol. 1991 Nov;65(11):5910-20 PubMed
Virology. 1983 Jan 15;124(1):59-74 PubMed
J Cell Biol. 1997 Aug 25;138(4):799-810 PubMed
J Virol. 1994 Jan;68(1):130-47 PubMed
J Cell Biol. 1996 Nov;135(3):647-60 PubMed
Proc Natl Acad Sci U S A. 1985 Apr;82(7):2096-100 PubMed
J Virol. 1991 Mar;65(3):1219-27 PubMed
J Cell Biol. 1993 May;121(3):521-41 PubMed
J Cell Sci. 1996 Jul;109 ( Pt 7):1739-47 PubMed
Cell. 1993 Mar 12;72(5):681-93 PubMed
Virology. 1993 Oct;196(2):381-401 PubMed
Cell. 1994 Feb 11;76(3):505-17 PubMed
J Virol. 1982 Nov;44(2):647-57 PubMed
Biochemistry. 1994 Sep 6;33(35):10815-24 PubMed
Virology. 1990 Nov;179(1):247-66, 517-63 PubMed
Virology. 1993 Nov;197(1):245-54 PubMed
J Invertebr Pathol. 1989 Mar;53(2):169-82 PubMed
Proc Natl Acad Sci U S A. 1980 Nov;77(11):6624-8 PubMed
J Virol. 1976 May;18(2):636-43 PubMed
Virology. 1976 Aug;73(1):43-58 PubMed
Virology. 1988 Apr;163(2):547-53 PubMed
J Cell Biol. 1977 Nov;75(2 Pt 1):593-605 PubMed
Arch Virol. 1981;67(1):11-8 PubMed
Trends Biochem Sci. 1991 Mar;16(3):87-92 PubMed
J Virol. 1992 Jul;66(7):4170-9 PubMed
J Biol Chem. 1996 Apr 12;271(15):8556-63 PubMed
J Virol. 1994 Nov;68(11):7320-8 PubMed
Infect Immun. 1996 Jun;64(6):1929-36 PubMed
J Immunol. 1994 Sep 1;153(5):1998-2003 PubMed
Curr Opin Cell Biol. 1995 Feb;7(1):94-101 PubMed
J Cell Biol. 1995 Jul;130(2):331-43 PubMed
J Natl Cancer Inst. 1978 Aug;61(2):431-6 PubMed
Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2026-30 PubMed
Trends Microbiol. 1993 Apr;1(1):25-31 PubMed
J Cell Biol. 1983 May;96(5):1248-57 PubMed
J Gen Virol. 1985 Mar;66 ( Pt 3):643-6 PubMed
J Gen Virol. 1997 Oct;78 ( Pt 10):2633-7 PubMed
J Cell Sci Suppl. 1986;5:129-44 PubMed
Trends Microbiol. 1997 Apr;5(4):142-8 PubMed
J Submicrosc Cytol Pathol. 1989 Apr;21(2):295-306 PubMed
Mol Biol Cell. 1997 Mar;8(3):421-30 PubMed
Intervirology. 1984;22(3):156-63 PubMed
Arch Virol. 1982;74(1):11-20 PubMed
Virology. 1986 Feb;149(1):91-106 PubMed
J Gen Virol. 1980 Sep;50(1):89-100 PubMed
Nature. 1995 Dec 7;378(6557):636-8 PubMed
J Virol. 1991 Sep;65(9):4598-608 PubMed
Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1511-5 PubMed
Virology. 1981 Sep;113(2):556-64 PubMed
Proc Natl Acad Sci U S A. 1975 Mar;72(3):994-8 PubMed
Infect Immun. 1995 Jul;63(7):2729-37 PubMed
Exp Cell Res. 1981 Mar;132(1):81-7 PubMed
Trends Cell Biol. 1996 May;6(5):168-71 PubMed
FEBS Lett. 1997 Jun 9;409(2):141-6 PubMed
J Virol. 1984 Feb;49(2):371-8 PubMed
J Cell Biol. 1995 Jan;128(1-2):51-60 PubMed