Inactivation of the plasma membrane ATPase of Schizosaccharomyces pombe by hydrogen peroxide and by the Fenton reagent (Fe2+/H2O2): nonradical vs. radical-induced oxidation
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
9821289
DOI
10.1007/bf02818574
Knihovny.cz E-resources
- MeSH
- Adenosine Triphosphatases antagonists & inhibitors metabolism MeSH
- Cell Membrane enzymology MeSH
- Kinetics MeSH
- Oxidation-Reduction MeSH
- Hydrogen Peroxide pharmacology MeSH
- Schizosaccharomyces enzymology growth & development MeSH
- Free Radicals pharmacology MeSH
- Dose-Response Relationship, Drug MeSH
- Iron pharmacology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine Triphosphatases MeSH
- Fenton's reagent MeSH Browser
- Hydrogen Peroxide MeSH
- Free Radicals MeSH
- Iron MeSH
In the absence of added Fe2+, the ATPase activity of isolated Schizosaccharomyces pombe plasma membranes (5-7 mumol P(i) per mg protein per min) is moderately inhibited by H2O2 in a concentration-dependent manner. Sizable inactivation occurs only at 50-80 mmol/L H2O2. The process, probably a direct oxidative action of H2O2 on the enzyme, is not induced by the indigenous membrane-bound iron (19.3 nmol/mg membrane protein), is not affected by the radical scavengers mannitol and Tris, and involves a decrease of both the K(m) of the enzyme for ATP and the V of ATP splitting. On exposing the membranes to the Fenton reagent (50 mumol/L Fe2+ + 20 mmol/L H2O2), which causes a fast production of HO. radicals, the ATPase is 50-60% inactivated and 90% of added Fe2+ is oxidized to Fe3+ within 1 min. The inactivation occurs only when Fe2+ is added before H2O2 and can thus bind to the membranes. The lack of effect of radical scavengers (mannitol, Tris) indicates that HO. radicals produced in the bulk phase play no role in inactivation. Blockage of the inactivation by the iron chelator deferrioxamine implies that the process requires the presence of Fe2+ ions bound to binding sites on the enzyme molecules. Added catalase, which competes with Fe2+ for H2O2, slows down the inactivation but in some cases increases its total extent, probably due to the formation of the superoxide radical that gives rise to delayed HO. production.
See more in PubMed
Anal Biochem. 1978 Jun 15;87(1):206-10 PubMed
Biochemistry. 1973 Jan 30;12(3):521-8 PubMed
Biochim Biophys Acta. 1986 Jan 16;854(1):38-44 PubMed
Biochem Biophys Res Commun. 1991 Dec 16;181(2):764-70 PubMed
Proc Natl Acad Sci U S A. 1977 Oct;74(10):4182-4 PubMed
Methods Enzymol. 1988;157:513-28 PubMed
J Biol Chem. 1991 Sep 15;266(26):17201-11 PubMed
J Biol Chem. 1992 Feb 15;267(5):3096-100 PubMed
Arch Biochem Biophys. 1983 Sep;225(2):740-7 PubMed
J Gen Microbiol. 1993 Jul;139(7):1627-34 PubMed
Arch Biochem Biophys. 1986 May 1;246(2):501-14 PubMed
Planta. 1992 Jan;186(2):212-8 PubMed
Folia Microbiol (Praha). 1993;38(2):135-40 PubMed
Ann N Y Acad Sci. 1974;242(0):69-76 PubMed
Anal Biochem. 1986 Jun;155(2):243-8 PubMed
Free Radic Res Commun. 1991;12-13 Pt 1:99-106 PubMed
J Biol Chem. 1983 Oct 10;258(19):11828-33 PubMed
Neurochem Res. 1989 Sep;14(9):845-51 PubMed
J Cell Physiol. 1991 Mar;146(3):362-9 PubMed
Proc Natl Acad Sci U S A. 1979 Dec;76(12):6361-5 PubMed
Free Radic Biol Med. 1990;9(4):315-25 PubMed
Effects of the Fenton reagent on transport in yeast