Investigating spike backpropagation induced Ca2+ influx in models of hippocampal and cortical pyramidal neurons
Jazyk angličtina Země Irsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.
PubMed
9886642
DOI
10.1016/s0303-2647(98)00060-4
PII: S0303-2647(98)00060-4
Knihovny.cz E-zdroje
- MeSH
- akční potenciály * MeSH
- draslíkové kanály fyziologie MeSH
- hipokampus cytologie fyziologie MeSH
- iontový transport MeSH
- modely neurologické MeSH
- mozková kůra cytologie fyziologie MeSH
- neurony fyziologie MeSH
- sodíkové kanály fyziologie MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Názvy látek
- draslíkové kanály MeSH
- sodíkové kanály MeSH
- vápník MeSH
We modeled the influx of calcium ions into dendrites following active backpropagation of spike trains in a dendritic tree, using compartmental models of anatomically reconstructed pyramidal cells in a GENESIS program. Basic facts of ion channel densities in pyramidal cells were taken into account. The time scale of the backpropagating spike train development was longer than in previous models. We also studied the relationship between intracellular calcium dynamics and membrane voltage. Comparisons were made between two pyramidal cell prototypes and in simplified model. Our results show that: (1) sodium and potassium channels are enough to explain regenerative backpropagating spike trains; (2) intracellular calcium concentration changes are consistent in the range of milliseconds to seconds; (3) the simulations support several experimental observations in both hippocampal and neocortical cells. No additional parameter search optimization was necessary. Compartmental models can be used for investigating the biology of neurons, and then simplified for constructing neural networks.
Citace poskytuje Crossref.org