Influence of Environmental Temperature and Hormonal Stimulation on the In Vitro Sperm Maturation in Sterlet Acipenser ruthenus in Advance of the Spawning Season

. 2021 May 15 ; 11 (5) : . [epub] 20210515

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34063418

Grantová podpora
"CENAKVA" (LM2018099) Ministry of Education, Youth and Sports of the Czech Republic
Biodiversity (CZ.02.1.01./0.0/0.0/16_025/0007370 Reproductive and genetic procedures for preserving fish biodiversity and aquaculture) Ministry of Education, Youth and Sports of the Czech Republic
QK1920326 Ministry of Agriculture of the Czech Republic
097/2019/Z Grant Agency of the University of South Bohemia in Ceske Budejovice

Sturgeon sperm maturation occurs outside the testes during the transit of testicular spermatozoa (TS) through the kidneys and the Wolffian ducts. A method of in vitro TS maturation in sterlet Acipenser ruthenus was used to investigate the effects of temperature and hormonal stimulation of spermiation on the ability of TS to complete this process. Spermatozoa motility parameters after in vitro maturation of testicular sperm, concentrations of sex steroid hormones and testis morphology were studied in three groups of sterlet: (1) after overwintering in ponds (OW), (2) adapted to spawning temperature (ST), and (3) adapted to spawning temperature with hormonal induction of spermiation (ST-HI). Blood plasma concentrations of testosterone, 11-ketotestosterone and 17,20β-dihydroxy-pregnenolone increased significantly after hormonal induction of spermiation (group ST-HI). In all groups, TS were not motile. After in vitro sperm maturation, motility was up to 60% only in group ST-HI. The data suggest that the ability of TS to be matured in vitro was not related to the environmental temperature, while hormonal stimulation of spermiation during the spawning season was an absolute requirement for optimal in vitro maturation.

Zobrazit více v PubMed

Betancur-R R., Wiley E., Arratia G., Acero A., Bailly N., Lecointre G., Orti G. Phylogenetic classification of bony fishes. BMC Evol. Biol. 2017;17:162. doi: 10.1186/s12862-017-0958-3. PubMed DOI PMC

Dzyuba V., Shelton W.L., Kholodnyy V., Boryshpolets S., Cosson J., Dzyuba B. Fish sperm biology in relation to urogenital system structure. Theriogenology. 2019;132:153–163. doi: 10.1016/j.theriogenology.2019.04.020. PubMed DOI

Dzyuba B., Cosson J., Boryshpolets S., Bondarenko O., Dzyuba V., Prokopchuk G., Gazo I., Rodina M., Linhart O. In vitro sperm maturation in sterlet, Acipenser ruthenus. Reprod. Biol. 2014;14:160–163. doi: 10.1016/j.repbio.2014.01.003. PubMed DOI

Dzyuba B., Boryshpolets S., Cosson J., Dzyuba V., Fedorov P., Saito T., Psenicka M., Linhart O., Rodina M. Motility and fertilization ability of sterlet Acipenser ruthenus testicular sperm after cryopreservation. Cryobiology. 2014;69:339–341. doi: 10.1016/j.cryobiol.2014.07.008. PubMed DOI

Bronzi P., Rosenthal H. Present and future sturgeon and caviar production and marketing: A global market overview. J. Appl. Ichthyol. 2014;30:1536–1546. doi: 10.1111/jai.12628. DOI

Alavi S.M.H., Rodina M., Gela D., Linhart O. Sperm biology and control of reproduction in sturgeon: (I) testicular development, sperm maturation and seminal plasma characteristics. Rev. Fish Biol. Fish. 2012;22:695–717. doi: 10.1007/s11160-012-9268-4. DOI

Dettlaff T.A., Ginsburg A.S., Schmalhausen O.I. Sturgeon Fishes: Developmental Biology and Aquaculture. Springer-Verlag; Berlin/Heidelberg, Germany: 1993.

Chebanov M.S., Galich E.V. Sturgeon Hatchery Manual. Food and Agriculture Organization of United Nations; Ankara, Turkey: 2013.

Dzyuba V., Dzyuba B., Cosson J., Boryshpolets S., Yamaner G., Kholodniy V., Rodina M. The antioxidant system of sterlet seminal fluid in testes and Wolffian ducts. Fish Physiol. Biochem. 2014;40:1731–1739. doi: 10.1007/s10695-014-9963-2. PubMed DOI

Amiri B.M., Maebayashi M., Adachi S., Yamauchi K. Testicular development and serum sex steroid profiles during the annual sexual cycle of the male sturgeon hybrid the bester. J. Fish Biol. 1996;48:1039–1050. doi: 10.1111/j.1095-8649.1996.tb01802.x. DOI

Rodríguez L., Begtashi I., Zanuy S., Carrillo M. Development and validation of an enzyme immunoassay for testosterone: Effects of photoperiod on plasma testosterone levels and gonadal development in male sea bass (Dicentrarchus labrax, L.) at puberty. Fish Physiol. Biochem. 2000;23:141–150. doi: 10.1023/A:1007871604795. DOI

Cuisset B., Pradelles P., Kime D.E., Kühn E.R., Babin P., Davail S., Le Menn F. Enzyme immunoassay for 11-ketotestosterone using acetylcholinesterase as laberl: Application to the measurement of 11-ketotestosterone in plasma of Siberian sturgeon. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1994;108:229–241. doi: 10.1016/1367-8280(94)90035-3. DOI

Nash J.P., Cuisset B.D., Bhattacharyya S., Suter H.C., Le Menn F., Kime D.E. An enzyme linked immunosorbant assay (ELISA) for testosterone, estradiol, and 17,20β-dihydroxy-4-pregenen-3-one using acetylcholinesterase as tracer: Application to measurement of diel patterns in rainbow trout (Oncorhynchus mykiss) Fish Physiol. Biochem. 2000;22:355–363. doi: 10.1023/A:1007850014021. DOI

Wilson-Leedy J.G., Ingermann R.L. Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters. Theriogenology. 2007;67:661–672. doi: 10.1016/j.theriogenology.2006.10.003. PubMed DOI

Purchase C.F., Earle P.T. Modifications to the IMAGEJ computer assisted sperm analysis plugin greatly improve efficiency and fundamentally alter the scope of attainable data. J. Appl. Ichthyol. 2012;28:1013–1016. doi: 10.1111/jai.12070. DOI

McDonald J.H. Handbook of Biological Statistics. 2nd ed. Sparky House Publishing; Baltimore, MD, USA: 2009.

Sieczyński P., Glogowski J., Cejko B., Grygoruk C. Characteristics of Siberian sturgeon and sterlet sperm motility parameters compared using CASA. Arch. Pol. Fish. 2012;20:137–143. doi: 10.2478/v10086-012-0016-0. DOI

Boryshpolets S., Kholodnyy V., Cosson J., Dzyuba B. Fish sperm motility analysis: The central role of the flagellum. Reprod. Fertil. Dev. 2018;30:833–841. doi: 10.1071/RD17478. PubMed DOI

Mylonas C.C., Duncan N.J., Asturiano J.F. Hormonal manipulations for the enhancement of sperm production in cultured fish and evaluation of sperm quality. Aquaculture. 2017;472:21–44. doi: 10.1016/j.aquaculture.2016.04.021. DOI

Caille N., Rodina M., Kocour M., Gela D., Flajšhans M., Linhart O. Quantity, motility and fertility of tench Tinca tinca (L.) sperm in relation to LHRH analogue and carp pituitary treatments. Aquac. Int. 2006;14:75–87. doi: 10.1007/s10499-005-9015-0. DOI

Cejko B.I., Krejszeff S., Żarski D., Judycka S., Targońska K., Kucharczyk D. Effect of carp pituitary homogenate (CPH) and sGnRHa (Ovaprim) on northern pike (Esox lucius) spermiation stimulation and its effect on quantity and quality of sperm. Anim. Reprod. Sci. 2018;193:217–225. doi: 10.1016/j.anireprosci.2018.04.073. PubMed DOI

Cejko B.I., Żarski D., Krejszeff S., Kucharczyk D., Kowalski R.K. Effect of hormonal stimulation on milt volume, number of sperm, and sperm motility in the crucian carp, Carassius carassius (L.) Isr. J. Aquacult. Bamid. 2013;65:1–7.

Fakriadis I., Zanatta E.M., Fleck R.P.D.S., Sena Mateo D.L., Papadaki M., Mylonas C.C. Endocrine regulation of long-term enhancement of spermiation in meagre (Argyrosomus regius) with GnRHa controlled-delivery systems. Gen. Comp. Endocrinol. 2020;297:113549. doi: 10.1016/j.ygcen.2020.113549. PubMed DOI

Alavi S.M.H., Hatef A., Mylonas C.C., Gela D., Papadaki M., Rodina M., Kašpar V., Pšenička M., Podhorec P., Linhart O. Sperm characteristics and androgens in Acipenser ruthenus after induction of spermiation by carp pituitary extract or GnRHa implants. Fish Physiol. Biochem. 2012;38:1655–1666. doi: 10.1007/s10695-012-9662-9. PubMed DOI

Linhart O., Mims S.D., Gomelsky B., Hiott A.E., Shelton W.L., Cosson J., Rodina M., Gela D. Spermiation of paddlefish (Polyodon spathula, Acipenseriformes) stimulated with injection of LHRH analogue and carp pituitary powder. Aquat. Living Resour. 2000;13:455–460. doi: 10.1016/S0990-7440(00)01068-8. DOI

Billard R. Biology and control of reproduction of sturgeons in fish farm. Iran. J. Fish. Sci. 2000;2:1–20.

Saad A., Billard R. Spermatozoa production and volume of semen collected after hormonal stimulation in the carp, Cyprinus carpio. Aquaculture. 1987;65:67–77. doi: 10.1016/0044-8486(87)90271-7. DOI

Lofts B. Testicular Function. In: Norris D.O., Jones R.E., editors. Hormones and Reproduction in Fishes, Amphibians, and Reptiles. Plenum Press; New York, NY, USA: 1987. pp. 283–325. DOI

Pham H.Q., Nguyen A.T., Kjørsvik E., Nguyen M.D., Arukwe A. Seasonal reproductive cycle of Waigieu seaperch (Psammoperca waigiensis) Aquacult. Res. 2012;43:815–830. doi: 10.1111/j.1365-2109.2011.02894.x. DOI

Sisneros J.A., Forlano P.M., Knapp R., Bass A.H. Seasonal variation of steroid hormone levels in an intertidal-nesting fish, the vocal plainfin midshipman. Gen. Comp. Endocrinol. 2004;136:101–116. doi: 10.1016/j.ygcen.2003.12.007. PubMed DOI

Schulz R.W., de França L.R., Lareyre J.-J., LeGac F., Chiarini-Garcia H., Nobrega R.H., Miura T. Spermatogenesis in fish. Gen. Comp. Endocrinol. 2010;165:390–411. doi: 10.1016/j.ygcen.2009.02.013. PubMed DOI

Barannikova I.A., Bayunova L.V., Semenkova T.B. Serum levels of testosterone, 11-ketotestosterone and oestradiol-17β in three species of sturgeon during gonadal development and final maturation induced by hormonal treatment. J. Fish Biol. 2004;64:1330–1338. doi: 10.1111/j.0022-1112.2004.00395.x. DOI

Du H., Zhang X., Xiaoqian L., Zhang S., Luo J., Liu Z., Qiao X., Kynard B., Wei Q. Gender and gonadal maturity stage identification of captive Chinese sturgeon, Acipenser sinensis, using ultrasound imagery and sex steroids. Gen. Comp. Endocrinol. 2017;245:36–43. doi: 10.1016/j.ygcen.2016.08.004. PubMed DOI

Webb M.A.H., Feist G.W., Foster E.P., Schreck C.B., Fitzpatrick M.S. Potential classification of sex and stage of gonadal maturity of wild white sturgeon using blood plasma indicators. Trans. Am. Fish. Soc. 2002;131:132–142. doi: 10.1577/1548-8659(2002)131<0132:PCOSAS>2.0.CO;2. DOI

Wildhaber M.L., Papoulias D.M., DeLonay A.J., Tillitt D.E., Bryan J.L., Annis M.L. Physical and hormonal examination of Missouri River shovelnose sturgeon reproductive stage: A reference guide. J. Appl. Ichthyol. 2007;23:382–401. doi: 10.1111/j.1439-0426.2007.00878.x. DOI

Wang W., Zhu H., Dong Y., Tian Z., Dong T., Hu H., Niu C. Dimorphic expression of sex-related genes in different gonadal development stages of sterlet, Acipenser ruthenus, a primitive fish species. Fish Physiol. Biochem. 2017;43:1557–1569. doi: 10.1007/s10695-017-0392-x. PubMed DOI

Vizziano D., Barrios F., Astigarraga I., Breton B., Williot P. Unusual conditions for Siberian sturgeon (Acipenser baerii Brandt) spawning. J. Appl. Ichthyol. 2006;22:325–330. doi: 10.1111/j.1439-0426.2007.00978.x. DOI

Semenkova T., Barannikova I., Kime D.E., McAllister B.G., Bayunova L., Dyubin V., Kolmakov N. Sex steroid profiles in female and male stellate sturgeon (Acipenser stellatus Pallas) during final maturation induced by hormonal treatment. J. Appl. Ichthyol. 2002;18:375–381. doi: 10.1046/j.1439-0426.2002.00368.x. DOI

Mylonas C.C., Scott A.P., Vermeirssen E.L.M., Zohar Y. Changes in plasma gonadotropin II and sex steroid hormones, and sperm production of striped bass after treatment with controlled-release gonadotropin-releasing hormone agonist-delivery systems. Biol. Reprod. 1997;57:669–675. doi: 10.1095/biolreprod57.3.669. PubMed DOI

Fostier A., Jalabert B., Billard R., Breton B., Zohar Y. The gonadal steroids. In: Hoar W.S., Randall D.J., Donaldson E.M., editors. Fish Physiology. Volume 9A. Academic Press; Orlando, FL, USA: 1983. pp. 277–372.

Arai R., Tamaoki B.-I. Steroid biosynthesis in vitro by testes of rainbow trout. Salmo gairdneri. Gen. Comp. Endocrinol. 1967;8:305–313. doi: 10.1016/0016-6480(67)90077-9. PubMed DOI

Bukovskaya O., Lambert J.G.D., Kime D.E. In vitro steroidogenesis by gonads of the Russian sturgeon, Acipenser gueldenstaedti Brandt. Fish Physiol. Biochem. 1997;16:345–353. doi: 10.1023/A:1007784020290. DOI

Colombo L., Belvedere P.C., Arcarese G. Gonadal steroidogenesis and gametogenesis in teleost fishes—a study on the sea bass, Dicentrarchus labrax L. Ital. J. Zool. 1978;45:89–101. doi: 10.1080/11250007809440269. DOI

Idler D.R., Macnab H.C. The biosynthesis of 11-ketotestosterone and 11β-hydroxytestosterone by Atlantic salmon tissues in vitro. Can. J. Biochem. 1967;45:581–589. doi: 10.1139/o67-067. PubMed DOI

Asturiano J.F., Sorbera L.A., Ramos J., Kime D.E., Carrillo M., Zanuy S. Group-synchronous ovarian development, spawning and spermiation in the European sea bass (Dicentrarchus labrax L.) could be regulated by shifts in gonadal steroidogenesis. Sci. Mar. 2002;66:273–282. doi: 10.3989/scimar.2002.66n3273. DOI

Thomas P., Pang Y., Zhu Y., Detweiler C., Doughty K. Multiple rapid progestin actions and progestin membrane receptor subtypes. Steroids. 2004;69:567–573. doi: 10.1016/j.steroids.2004.05.004. PubMed DOI

Miura T., Miura C.I. Molecular control mechanisms of fish spermatogenesis. Fish Physiol. Biochem. 2003;28:181–186. doi: 10.1023/B:FISH.0000030522.71779.47. DOI

Scott A.P., Sumpter J.P., Stacey N. The role of the maturation-inducing steroid, 17,20β-dihydroxypregn-4-en-3-one, in male fishes: A review. J. Fish Biol. 2010;76:183–224. doi: 10.1111/j.1095-8649.2009.02483.x. PubMed DOI

Schulz R.W., Miura T. Spermatogenesis and its endocrine regulation. Fish Physiol. Biochem. 2002;26:43–56. doi: 10.1023/A:1023303427191. DOI

Miura T., Miura C. Japanese eel: A model for analysis of spermatogenesis. Zool. Sci. 2001;18:1055–1063. doi: 10.2108/zsj.18.1055. DOI

Morisawa S., Morisawa M. Induction of potential for sperm motility by bicarbonate and pH in rainbow trout and chum salmon. J. Exp. Biol. 1988;136:13–22. doi: 10.1242/jeb.136.1.13. PubMed DOI

Ohta H., Ikeda K., Izawa T. Increases in concentrations of potassium and bicarbonate ions promote acquisition of motility in vitro by Japanese eel spermatozoa. J. Exp. Zool. 1997;277:171–180. doi: 10.1002/(SICI)1097-010X(19970201)277:2<171::AID-JEZ9>3.0.CO;2-M. DOI

Bayunova L., Canario A.V.M., Semenkova T., Dyubin V., Sverdlova O., Trenkler I., Barannikova I. Sex steroids and cortisol levels in the blood of stellate sturgeon (Acipenser stellatus Pallas) during final maturation induced by LH-RH-analogue. J. Appl. Ichthyol. 2006;22:334–339. doi: 10.1111/j.1439-0426.2007.00980.x. DOI

Prokopchuk G., Dzyuba B., Rodina M., Cosson J. Control of sturgeon sperm motility: Antagonism between K+ ions concentration and osmolality. Anim. Reprod. Sci. 2016;164:82–89. doi: 10.1016/j.anireprosci.2015.11.015. PubMed DOI

Cosson J., Linhart O. Paddlefish, Polyodon spathula, spermatozoa: Effects of potassium and pH on motility. Folia Zool. 1996;45:361–370.

Linhart O., Cosson J., Mims S.D., Shelton W.L., Rodina M. Effects of ions on the motility of fresh and demembranated paddlefish (Polyodon spathula) spermatozoa. Reproduction. 2002;124:713–719. doi: 10.1530/rep.0.1240713. PubMed DOI

Bondarenko O., Dzyuba B., Rodina M., Cosson J. Role of Ca2+ in the IVM of spermatozoa from the sterlet Acipenser ruthenus. Reprod. Fertil. Dev. 2016;29:1319–1328. doi: 10.1071/RD16145. PubMed DOI

Linhart O., Mims S.D., Gomelsky B., Hiott A.E., Shelton W.L., Cosson J., Rodina M., Gela D., Bastl J. Ionic composition and osmolality of paddlefish (Polyodon spathula, Acipenseriformes) seminal fluid. Aquac. Int. 2003;11:357–368. doi: 10.1023/A:1025773707439. DOI

Flynn S.R., Benfey T.J. Sex differentiation and aspects of gametogenesis in shortnose sturgeon Acipenser brevirostrum Lesueur. J. Fish Biol. 2007;70:1027–1044. doi: 10.1111/j.1095-8649.2007.01361.x. DOI

Barannikova I.A., Bayunova L.V., Semenkova T.B., Trenkler I.V. Changes in the physiological state of hiemal form of the Russian sturgeon Acipenser gueldenstaedtii in the Volga after holding it and hormonal impacts. J. Ichthyol. 2008;48:402–407. doi: 10.1134/S0032945208050044. DOI

Divers S.J., Boone S.S., Hoover J.J., Boysen K.A., Killgore K.J., Murphy C.E., George S.G., Camus A.C. Field endoscopy for identifying gender, reproductive stage and gonadal anomalies in free-ranging sturgeon (Scaphirhynchus) from the lower Mississippi River. J. Appl. Ichthyol. 2009;25:68–74. doi: 10.1111/j.1439-0426.2009.01337.x. DOI

Doroshov S.I., Moberg G.P., Van Eenennaam J.P. Observations on the reproductive cycle of cultures white sturgeon, Acipenser transmontanus. Environ. Biol. Fishes. 1997;48:265–278. doi: 10.1023/A:1007336802423. DOI

Matsche M.A., Rosemary K.M., Brundage H.M., III, O’Herron J.C., II Reproductive demographics, intersex, and altered hormone levels in shortnose sturgeon, Acipenser brevirostrum, from Delaware River, USA. J. Appl. Ichthyol. 2013;29:299–309. doi: 10.1111/jai.12133. DOI

Petochi B.T., Di Marco P., Donadelli V., Longobardi A., Corsalini I., Bertotto D., Finoia M.G., Marino G. Sex and reproductive stage identification of sturgeon hybrids (Acipenser naccarii × Acipenser baerii) using different tools: Ultrasounds, histology and sex steroids. J. Appl. Ichthyol. 2011;27:637–642. doi: 10.1111/j.1439-0426.2011.01715.x. DOI

Pšenička M., Saito T., Linhartová Z., Gazo I. Isolation and transplantation of sturgeon early-stage germ cells. Theriogenology. 2015;83:1085–1092. doi: 10.1016/j.theriogenology.2014.12.010. PubMed DOI

Golpour A., Broquard C., Milla S., Dadras H., Baloch A.R., Saito T., Pšenička M. Determination of annual reproductive cycle in male sterlet, Acipenser ruthenus using histology and ultrasound imaging. Fish Physiol. Biochem. 2020 doi: 10.1007/s10695-020-00892-8. PubMed DOI

Van Eenennaam J.P., Doroshov S.I. Effects of age and body size on gonadal development of Atlantic sturgeon. J. Fish Biol. 1998;53:624–637. doi: 10.1111/j.1095-8649.1998.tb01006.x. DOI

Yarmohammadi M., Pourkazemi M., Kazemi R., Sadati M.A.Y., Hallajian A., Saber M.H. Sex steroid level and sexual dimorphism expression of genes in gonads of the great sturgeon Huso huso Linneaus, 1758 during maturity developmental stages. Aquacult. Res. 2017;48:1413–1429. doi: 10.1111/are.12977. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...