• This record comes from PubMed

A role of basic residues and the putative intercalating phenylalanine of the HMG-1 box B in DNA supercoiling and binding to four-way DNA junctions

. 2000 Nov 17 ; 275 (46) : 35699-707.

Language English Country United States Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 10962007
DOI 10.1074/jbc.m007167200
PII: S0021-9258(20)88660-8
Knihovny.cz E-resources

HMG (high mobility group) 1 is a chromosomal protein with two homologous DNA-binding domains, the HMG boxes A and B. HMG-1, like its individual HMG boxes, can recognize structural distortion of DNA, such as four-way DNA junctions (4WJs), that are very likely to have features common to their natural, yet unknown, cellular binding targets. HMG-1 can also bend/loop DNA and introduce negative supercoils in the presence of topoisomerase I in topologically closed DNAs. Results of our gel shift assays demonstrate that mutation of Arg(97) within the extended N-terminal strand of the B domain significantly (>50-fold) decreases affinity of the HMG box for 4WJs and alters the mode of binding without changing the structural specificity for 4WJs. Several basic amino acids of the extended N-terminal strand (Lys(96)/Arg(97)) and helix I (Arg(110)/Lys(114)) of the B domain participate in DNA binding and supercoiling. The putative intercalating hydrophobic Phe(103) of helix I is important for DNA supercoiling but dispensable for binding to supercoiled DNA and 4WJs. We conclude that the B domain of HMG-1 can tolerate substitutions of a number of amino acid residues without abolishing the structure-specific recognition of 4WJs, whereas mutations of most of these residues severely impair the topoisomerase I-mediated DNA supercoiling and change the sign of supercoiling from negative to positive.

References provided by Crossref.org

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...