Hyperosmotic stress represses the transcription of HXT2 and HXT4 genes in Saccharomyces cerevisiae
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
10983231
DOI
10.1007/bf02903707
Knihovny.cz E-zdroje
- MeSH
- fungální proteiny genetika MeSH
- genetická transkripce MeSH
- geny hub * MeSH
- glukosa metabolismus MeSH
- membránové proteiny genetika MeSH
- osmotický tlak MeSH
- proteiny přenášející monosacharidy genetika MeSH
- proteiny usnadňující transport glukosy MeSH
- Saccharomyces cerevisiae - proteiny * MeSH
- Saccharomyces cerevisiae genetika růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fungální proteiny MeSH
- glukosa MeSH
- HXT2 protein, S cerevisiae MeSH Prohlížeč
- HXT4 protein, S cerevisiae MeSH Prohlížeč
- membránové proteiny MeSH
- proteiny přenášející monosacharidy MeSH
- proteiny usnadňující transport glukosy MeSH
- Saccharomyces cerevisiae - proteiny * MeSH
Effects of hyperosmotic stress on the transcriptional regulation of the HXT2 and HXT4 genes of Saccharomyces cerevisiae were investigated under glucose-repressed and -depressed growth conditions. Hyperosmotic stress repressed the transcription of these HXT genes up to 81% depending on growth conditions. Preconditioning of yeast cells for the hyperosmotic stress resulted in a much stronger repression of both HXT genes. The negative effect of hyperosmotic stress was much higher for HXT4 than HXT2. These results also show that hyperosmotic stress interferes with the glucose-dependent transcriptional activation or derepression of HXT2 and HXT4 genes transcription in S. cerevisiae.
Zobrazit více v PubMed
Proc Natl Acad Sci U S A. 1985 Dec;82(24):8557-61 PubMed
EMBO J. 1994 Sep 15;13(18):4382-9 PubMed
FEMS Microbiol Rev. 1997 Aug;21(1):85-111 PubMed
Methods Enzymol. 1983;101:181-91 PubMed
Mol Microbiol. 1993 Oct;10(2):253-8 PubMed
Mol Cell Biol. 1996 Nov;16(11):6419-26 PubMed
Yeast. 1997 Jan;13(1):9-20 PubMed
Curr Opin Genet Dev. 1998 Oct;8(5):560-4 PubMed
EMBO J. 1998 May 1;17(9):2566-73 PubMed
EMBO J. 1992 Sep;11(9):3157-64 PubMed
EMBO J. 1998 May 1;17(9):2543-53 PubMed
Arch Microbiol. 1991;156(1):38-42 PubMed
J Bacteriol. 1982 Dec;152(3):1295-7 PubMed
Crit Rev Biochem Mol Biol. 1993;28(4):259-308 PubMed
Yeast. 1998 Aug;14(11):985-1000 PubMed
Science. 1993 Oct 22;262(5133):566-9 PubMed
J Biol Chem. 1999 Jan 1;274(1):205-10 PubMed
Mol Microbiol. 1995 Apr;16(1):157-67 PubMed
Mol Cell Biol. 1990 Dec;10(12):6389-96 PubMed
Mol Cell Biol. 1986 Nov;6(11):3774-84 PubMed
J Bacteriol. 1983 Jan;153(1):163-8 PubMed
Mol Cell Biol. 1995 Mar;15(3):1564-72 PubMed
Yeast. 1999 Aug;15(11):1045-57 PubMed
Mol Cell Biol. 1994 Jun;14(6):4135-44 PubMed
Annu Rev Biochem. 1998;67:821-55 PubMed
Microbiology (Reading). 1997 Apr;143 ( Pt 4):1133-1139 PubMed
Nature. 1994 May 19;369(6477):242-5 PubMed
Folia Microbiol (Praha). 1998;43(2):204-6 PubMed
J Bacteriol. 1998 Feb;180(3):556-62 PubMed
FEBS Lett. 1991 Jul 29;286(1-2):13-7 PubMed
J Biol Chem. 1994 Mar 25;269(12):8792-6 PubMed
Mol Cell Biol. 1996 Oct;16(10):5536-45 PubMed
J Biol Chem. 1997 Feb 28;272(9):5544-54 PubMed
Science. 1993 Mar 19;259(5102):1760-3 PubMed
Mol Gen Genet. 1995 Nov 15;249(2):127-38 PubMed
Mol Microbiol. 1992 Aug;6(15):2183-90 PubMed
Genetics. 1994 Aug;137(4):957-66 PubMed
Mol Cell Biol. 1990 Nov;10(11):5903-13 PubMed