Mosaic structure of the DNA molecules of the human chromosomes 21 and 22
Language English Country Netherlands Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- DNA, Bacterial chemistry MeSH
- DNA chemistry MeSH
- Escherichia coli genetics MeSH
- Nucleic Acid Conformation MeSH
- Humans MeSH
- Chromosomes, Human, Pair 21 * MeSH
- Chromosomes, Human, Pair 22 * MeSH
- Repetitive Sequences, Nucleic Acid MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Bacterial MeSH
- DNA MeSH
We calculated nucleotide distribution curves along the DNA molecules of the human chromosomes 21 and 22, their correlations in more than 10,000 equidistant positions, and subjected the correlations to cluster analysis. The cluster analysis demonstrated that both DNA molecules were composed of two types of segments exhibiting qualitatively different correlations. The segments differed most in the correlation of the distribution curves of cytosine and guanine, which was very high in type I segments but weak in type II segments. The type I and II segments also significantly differed in the correlations of the distribution curves of adenine with thymine. In addition, adenine strongly anticorrelated with cytosine but this anticorrelation was uniform along both chromosomes and, therefore, it did not contribute to the distinction of the two types of segments. The segments were up to 100 kbp long but they had nothing in common with isochores. Building blocks of the mosaic structure of the DNA molecules of the human chromosomes 21 and 22 are very similar but different in several interesting aspects from those of E. coli.
See more in PubMed
Nature. 2000 May 18;405(6784):299-304 PubMed
Nucleic Acids Res. 2000 Jan 1;28(1):15-8 PubMed
Nature. 1997 Jun 12;387(6634):708-13 PubMed
Nature. 1985 Jan 24-30;313(6000):277-84 PubMed
Science. 1999 Dec 10;286(5447):2165-9 PubMed
Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13919-24 PubMed
Cell. 1985 Jan;40(1):9-17 PubMed
Nature. 1987 May 7-13;327(6117):20 PubMed
J Exp Med. 1944 Feb 1;79(2):137-58 PubMed
J Biomol Struct Dyn. 1999 Oct;17(2):267-73 PubMed
Gene. 1987;54(2-3):155-65 PubMed
Nucleic Acids Res. 1989 Jul 25;17(14):5547-63 PubMed
Gene. 1999 Sep 30;238(1):65-77 PubMed
J Mol Biol. 1995 Dec 1;254(3):337-41 PubMed
FEBS Lett. 1992 Jun 29;305(2):163-5 PubMed
Comput Appl Biosci. 1995 Apr;11(2):195-9 PubMed
Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5123-8 PubMed
J Mol Evol. 1999 Nov;49(5):591-600 PubMed
Cell. 1999 Nov 24;99(5):459-62 PubMed
Cell. 1981 Nov;26(3 Pt 1):345-53 PubMed
Nature. 1987 May 14-20;327(6118):169-70 PubMed
Nature. 1977 Feb 24;265(5596):687-95 PubMed
Nature. 1999 Dec 2;402(6761):489-95 PubMed
J Mol Evol. 1994 Nov;39(5):439-47 PubMed
J Mol Biol. 1982 Dec 25;162(4):729-73 PubMed
J Biomol Struct Dyn. 1997 Apr;14(5):629-39 PubMed
Science. 1985 Feb 1;227(4686):484-92 PubMed
Biochem Biophys Res Commun. 2001 Jan 19;280(2):567-73 PubMed
Trends Genet. 1997 Jun;13(6):240-5 PubMed
Nature. 2000 May 18;405(6784):311-9 PubMed
Biochim Biophys Acta. 1989 Dec 22;1009(3):280-2 PubMed
Folia Biol (Praha). 1999;45(5):167-72 PubMed
J Mol Evol. 1995 Nov;41(5):597-603 PubMed
Biochem Biophys Res Commun. 2000 Jun 7;272(2):571-5 PubMed
Mol Biol Evol. 1996 May;13(5):660-5 PubMed
J Mol Biol. 1986 Sep 5;191(1):139-40 PubMed
Plant Mol Biol. 1999 Dec;41(6):713-20 PubMed
Res Microbiol. 1999 Nov-Dec;150(9-10):725-33 PubMed
Mol Biol Evol. 1998 Sep;15(9):1145-59 PubMed
J Biol Chem. 1995 Jan 13;270(2):631-7 PubMed
J Theor Biol. 1999 Nov 21;201(2):141-56 PubMed
FEBS Lett. 1995 Apr 10;362(3):257-60 PubMed
Gene. 2000 Dec 23;259(1-2):31-43 PubMed
Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10268-73 PubMed
Curr Opin Struct Biol. 1998 Jun;8(3):333-7 PubMed