Concordance between genetic relatedness and phenotypic similarities of Trichomonas vaginalis strains
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
11734059
PubMed Central
PMC60492
DOI
10.1186/1471-2148-1-11
Knihovny.cz E-zdroje
- MeSH
- druhová specificita MeSH
- fenotyp MeSH
- fylogeneze MeSH
- lidé MeSH
- Mycoplasma genetika izolace a purifikace MeSH
- mykoplazmové infekce genetika MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- polymorfismus genetický genetika MeSH
- protozoální DNA genetika MeSH
- RNA-viry genetika izolace a purifikace MeSH
- technika náhodné amplifikace polymorfní DNA metody MeSH
- trichomonádová vaginitida genetika MeSH
- Trichomonas vaginalis genetika mikrobiologie patogenita virologie MeSH
- virulence genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- protozoální DNA MeSH
BACKGROUND: Despite the medical importance of trichomoniasis, little is known about the genetic relatedness of Trichomonas vaginalis strains with similar biological characteristics. Furthermore, the distribution of endobionts such as mycoplasmas or Trichomonas vaginalis virus (TVV) in the T. vaginalis metapopulation is poorly characterised. RESULTS: We assayed the relationship between 20 strains of T. vaginalis from 8 countries using the Random Amplified Polymorphic DNA (RAPD) analysis with 27 random primers. The genealogical tree was constructed and its bootstrap values were computed using the program FreeTree. Using the permutation tail probability tests we found that the topology of the tree reflected both the pattern of resistance to metronidazole (the major anti-trichomonal drug) (p < 0.01) and the pattern of infection of strains by mycoplasmas (p < 0.05). However, the tree did not reflect pattern of virulence, geographic origin or infection by TVV. Despite low bootstrap support for many branches, the significant clustering of strains with similar drug susceptibility suggests that the tree approaches the true genealogy of strains. The clustering of mycoplasma positive strains may be an experimental artifact, caused by shared RAPD characters which are dependent on the presence of mycoplasma DNA. CONCLUSIONS: Our results confirmed both the suitability of the RAPD technique for genealogical studies in T. vaginalis and previous conclusions on the relatedness of metronidazol resistant strains. However, our studies indicate that testing analysed strains for the presence of endobionts and assessment of the robustness of tree topologies by bootstrap analysis seem to be obligatory steps in such analyses.
Zobrazit více v PubMed
Sogin ML, Silberman JD. Evolution of the protists and protistan parasites from the perspective of molecular systematics. Int J Parasitol. 1998;28:11–20. doi: 10.1016/S0020-7519(97)00181-1. PubMed DOI
Kulda J. Employment of experimental animals in studies of Trichomonas vaginalis infection. Trichomonads Parasitic in Humans (Edited by Honigberg BM) New York, Springer-Verlag. 1989. pp. 205–277.
Petrin D, Delgaty K, Bhatt R, Garber G. Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev. 1998;11:300–17. PubMed PMC
Diddle AW. Trichomonas vaginalis: resistance to metronidazole. Am J Obstet Gynecol. 1967;98:583–585. PubMed
Aure JC, Gjonnaess H. Metronidazole treatment of trichomonal vaginitis. A comparison of cure rates in 1961 and 1967. Ada Obstet Gynecol Scand. 1969;48:440–445. PubMed
Kurnatowska A. Metronidazole resistance of Trichomonas vaginalis Donne. Wiad Parazytol. 1969;15:399–401. PubMed
Meingassner JG, Thurner J. Strain of Trichomonas vaginalis resistant to metronidazole and other 5-metronidazole. Antimicrob Agents Chemother. 1979;15:254–257. PubMed PMC
Nielsen MH. The ultrastructure of Trichomonas vaginalis Donne before and after transfer from vaginal secretion to Diamonds medium. Acta Pathol Microbiol Scand Suppl. 1975;83:581–589. PubMed
Scholtyseck E, Teras J, Kasakova I, Sethi KK. Electron microscope observations on the interaction of Mycoplasma fermentans with Trichomonas vaginalis. Z Parasitenkd. 1985;71:435–442. PubMed
Wang AL, Wang CC. The double-stranded RNA in Trichomonas vaginalis may originate from virus-like particles. Proc Natl Acad Sci USA. 1986;83:7956–7960. PubMed PMC
Flegr J, Čerkasov J, Kulda J, Tachezy J, Štokrová J. The dsRNA of Trichomonas vaginalis is associated with virus like particles and does not correlate with metronidazole resistance. Folia Microbiol. 1987;32:345–348. PubMed
Vohra H, Sharma P, Sofi BA, Gupta I, Ganguly NK, Mahajan RC, Malla N. Correlation of zymodeme patterns, virulence & drug sensitivity of Trichomonas vaginalis isolates from women. Indian J Med Res. 1991;93:37–39. PubMed
Proctor EM, Naaykens W, Wong Q, Bowie WR. Isoenzyme patterns of isolates of Trichomonas vaginalis from Vancouver. Sex Transm Dis. 1988;15:181–185. PubMed
Krieger JN, Holmes KK, Spence MR, Rein MF, McCormack WM, Tam MR. Geographic variation among isolates of Trichomonas vaginalis: demonstration of antigenic heterogeneity by using monoclonal antibodies and the indirect immunofluorescence technique. J Infect Dis. 1985;152:979–984. PubMed
Stiles JK, Shah PH, Xue L, Meade JC, Lushbaugh WB, Cleary JD, Finley RW. Molecular typing of Trichomonas vaginalis isolates by HSP70 restriction fragment length polymorphism. American Journal Of Tropical Medicine And Hygiene. 2000;62:441–445. PubMed
Snipes LJ, Gamard PM, Narcisi EM, Ben Beard C, Lehmann T, Secor WE. Molecular epidemiology of metronidazole resistance in a population of Trichomonas vaginalis clinical isolates. Journal Of Clinical Microbiology. 2000;38:3004–3009. PubMed PMC
Vaňáčová Š, Tachezy J, Kulda J, Flegr J. Characterization of trichomonad species and strains by PCR fingerprinting. J Eukaryotic Microbiol. 1997;44:545–552. PubMed
Bellinvia E, Munclinger P, Flegr J. Application of the RAPD technique for a study of the phylogenetic relationships among eight species of the genus Apodemus. Folia Zoologica. 1999;48:241–248.
Tibayrenc M, Neubauer K, Barnabe C, Guerrini F, Skarecky D, Ayala FJ. Genetic characterization of 6 parasitic protozoa – parity between random-primer DNA typing and multilocus enzyme electrophoresis. Proc Natl Acad Sci USA. 1993;90:1335–1339. PubMed PMC
Morgan UM, Constantine CC, Greene WK, Thompson RCA. RAPD (random amplified polymorphic DNA) analysis of Giardia DNA and correlation with isoenzyme data. Trans R Soc Trop Med Hyg. 1993;87:702–705. PubMed
Felleisen RSJ. Comparative genetic analysis of tritrichomonadid protozoa by the random amplified polymorphic DNA technique. Parasitology Research. 1998;84:153–156. doi: 10.1007/s004360050374. PubMed DOI
Pavlíček A, Hrdá Š, Flegr J. FreeTree – freeware program for construction of phylogenetic trees on the basis of distance data and for bootstrap/jackknife analysis of the trees robustness. Application in the RAPD analysis of genus Frenkelia. Folia biol (Prague) 1999;45:97–99. PubMed
Cavier RE, Gobert JG, Savel J. Application D'une methode d'infestation intraperitoneale de la souris par Trichomonas vaginalis a l'etude pharmacologique des trichomonacides. Ann Pharm Fr. 1972;30:637–642. PubMed
Hallden C, Hansen M, Nilsson NO, Hjerdin A, Sall T. Competition as a source of errors in RAPD analysis. Theor Appl Genet. 1996;93:1185–1192. doi: 10.1007/s00122005035510.1007/s001220050355. PubMed DOI
Hampl V, Pavlíček A, Flegr J. Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites. Int J Syst Evol Microbiol. 2001;51:731–735. PubMed
Tibayrenc M. Genetic epidemiology of parasitic protozoa and other infectious agents: the need for an integrated approach. Int J Parasitol. 1998;28:85–104. doi: 10.1016/S0020-7519(97)00180-X. PubMed DOI
Kulda J, Nohýnková E, Ludvík J. Basic Structure and Function of the Trichomonad Cell. Acta Universitatis Carolinae – Biologica. 1986;30:181–198.
Drmota T, Král J. Karyotype of Trichomonas vaginalis. Eur J Protistol. 1997;33:131–135.
Diamond LS. The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol. 1957;43:488–490. PubMed
Pramanick D, Forstová J, Pivec L. Guanidine hydrochloride applied to the isolation DNA from different sources. FEBS Lett. 1976;62:81–84. doi: 10.1016/0014-5793(76)80021-X. PubMed DOI
van Kuppeveld FJ, Johansson KE, Galama JM, Kissing J, Bolske G, van der Logt JT, Melchers WJ. Detection of mycoplasma contamination in cell cultures by a mycoplasma group-specific PCR. Appl Environ Microbiol. 1994;60:149–152. PubMed PMC
Tachezy J, Kulda J, Tomková E. Aerobic resistance of Trichomonas vaginalis to metronidazole induced in vitro. Parasitology. 1993;106:31–37. PubMed
Tachezy J, Kulda J. Testing the resistance to metronidazole in vitro in clinical isolates of Trichomonas vaginalis 2. Standard assays proposed. Cs Epid Mikrobiol Immunol. 1991;40:97–104. PubMed
Müller M, Lossick JG, Gorrell TE. In vitro susceptibility of Trichomonas vaginalis to metronidazole and treatment outcome in vaginal trichomoniasis. Sex Transm Dis. 1988;15:17–24. PubMed
Honigberg BM. Comparative pathogenicity of Trichomonas vaginalis and Trichomonas gallinae for mice. I. Gross pathology, quantitative evaluation of virulence, and some factors affecting pathogenicity. J Parasitol. 1961;47:545–571. PubMed
Kulda J, Suchánková E, Svoboda S. Studies on pathogenicity of Tetratrichomonas gallinarum in mice and turkey poults. Acta Vet (Brno) 1974;43:53–64.
Nei M, Li W-H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA. 1979;76:5269–5273. PubMed PMC
Saitou N, Nei M. The Neighbor-joining method: a new method for reconstruction of phylogenetics trees. Mol Biol Evol. 1987;4:406–425. PubMed
Adams DC, Anthony CD. Using randomization techniques to analyse behavioural data. Anim Behav. 1996;51:733–738. doi: 10.1006/anbe.1996.007710.1006/anbe.1996.0077. DOI
Flegr J, Záboj P, Vaňáčová Š. Correlation between aerobic and anaerobic resistance to metronidazole in trichomonads: application of a new computer program for permutation tests. Parasitol Research. 1998;84:590–592. doi: 10.1007/s004360050454. PubMed DOI
Kulda J, Vojtěchovská M, Tachezy J, Demeš P, Kunzová E. Metronidazole resistance of Trichomonas vaginalis as a cause of treatment failure in trichomoniasis-A case. Br J Vener Dis. 1982;58:394–399. PubMed PMC
Reardon LV, Ashburn LL, Jacobs L. Differences in strains of Trichomonas vaginalis as revealed by intraperitoneal injections into mice. J Parasitol. 1961;47:527–532. PubMed
Kulda J, Honigberg BM, Frost JK, Hollander DH. Pathogenicity of Trichomonas vaginalis. Am J Obstet Gynecol. 1970;108:908–918. PubMed
Silva Filho FC, Elias CA, Desouza W. Further studies on the surface charge of various strains of Trichomonas vaginalis and Tritrichomonas foetus. Cell Biophys. 1986;8:161–176. PubMed
Lossick JG, Müller M, Gorrell TE. In vitro drug susceptibility and doses of metronidazole required for cure in cases of refractory vaginal trichomoniasis. J Infect Dis. 1986;153:948–955. PubMed
Forsgren A, Forssman L. Metronidazole resistant Trichomonas vaginalis. Br J Vener Dis. 1979;55:351–353. PubMed PMC
Kulda J, Honigberg BM. Behavior and pathogenicity of Tritrichomonas foetus in chick liver cell cultures. Journal of Protozoology. 1969;16:479–495. PubMed