• This record comes from PubMed

Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene

. 2002 ; 47 (2) : 83-93.

Language English Country United States Media print

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Several aerobic metabolic pathways for the degradation of benzene, toluene, ethylbenzene and xylene (BTEX), which are provided by two enzymic systems (dioxygenases and monooxygenases), have been identified. The monooxygenase attacks methyl or ethyl substituents of the aromatic ring, which are subsequently transformed by several oxidations to corresponding substituted pyrocatechols or phenylglyoxal, respectively. Alternatively, one oxygen atom may be first incorporated into aromatic ring while the second atom of the oxygen molecule is used for oxidation of either aromatic ring or a methyl group to corresponding pyrocatechols or protocatechuic acid, respectively. The dioxygenase attacks aromatic ring with the formation of 2-hydroxy-substituted compounds. Intermediates of the "upper" pathway are then mineralized by either ortho- or meta-ring cleavage ("lower" pathway). BTEX are relatively water-soluble and therefore they are often mineralized by indigenous microflora. Therefore, natural attenuation may be considered as a suitable way for the clean-up of BTEX contaminants from gasoline-contaminated soil and groundwater.

See more in PubMed

J Colloid Interface Sci. 2000 Sep 15;229(2):445-452 PubMed

Biodegradation. 1997;8(3):143-51 PubMed

Folia Microbiol (Praha). 2001;46(3):211-6 PubMed

J Bacteriol. 1994 Jun;176(12 ):3749-56 PubMed

Eur J Biochem. 1972 Jul 24;28(3):301-10 PubMed

Folia Microbiol (Praha). 2000;45(1):35-40 PubMed

J Bacteriol. 1974 Sep;119(3):923-9 PubMed

J Hazard Mater. 2001 Apr 20;82(3):275-89 PubMed

Appl Environ Microbiol. 1994 Jun;60(6):1914-20 PubMed

J Am Chem Soc. 1973 Jun 13;95(12):4048-9 PubMed

J Bacteriol. 1974 Sep;119(3):930-6 PubMed

Annu Rev Microbiol. 1997;51:341-73 PubMed

Biodegradation. 1999 Feb;10(1):1-13 PubMed

J Bacteriol. 1997 Jan;179(2):301-9 PubMed

J Bacteriol. 1961 Mar;81:425-30 PubMed

Appl Environ Microbiol. 1996 Sep;62(9):3101-6 PubMed

Appl Environ Microbiol. 1992 Sep;58(9):2723-9 PubMed

Biotechnol Bioeng. 1999 Mar 5;62(5):526-36 PubMed

Appl Environ Microbiol. 1996 May;62(5):1728-40 PubMed

J Bacteriol. 1989 Sep;171(9):5048-55 PubMed

J Bacteriol. 1974 Oct;120(1):416-23 PubMed

Folia Microbiol (Praha). 2001;46(3):205-9 PubMed

Appl Environ Microbiol. 1994 Aug;60(8):2802-10 PubMed

Appl Environ Microbiol. 1991 Oct;57(10):2981-5 PubMed

Biotechnol Bioeng. 1993 May;41(11):1057-65 PubMed

Biodegradation. 1997;8(4):265-73 PubMed

J Bacteriol. 1983 Jun;154(3):1356-62 PubMed

Can J Microbiol. 1968 Sep;14(9):1005-9 PubMed

Eur J Biochem. 1997 Feb 1;243(3):577-96 PubMed

Microb Ecol. 1998 Nov;36(3):349-361 PubMed

J Bacteriol. 1991 Sep;173(17):5315-27 PubMed

Biotechnol Bioeng. 1994 Aug 5;44(4):533-8 PubMed

J Bacteriol. 1991 May;173(9):3010-6 PubMed

J Biotechnol. 1999 Jan 22;67(2-3):99-112 PubMed

Lett Appl Microbiol. 1996 Oct;23(4):257-60 PubMed

Appl Microbiol Biotechnol. 2000 Jun;53(6):748-53 PubMed

FEMS Microbiol Lett. 1990 Nov;60(3):259-64 PubMed

Appl Environ Microbiol. 1993 Apr;59(4):1025-9 PubMed

Appl Environ Microbiol. 1996 Mar;62(3):1129-32 PubMed

Folia Microbiol (Praha). 2001;46(6):535-9 PubMed

J Biol Chem. 1989 Sep 5;264(25):14940-6 PubMed

J Am Chem Soc. 1973 Jun 27;95(13):4420-1 PubMed

J Bacteriol. 1975 Oct;124(1):7-13 PubMed

Appl Environ Microbiol. 1995 Aug;61(8):3185-8 PubMed

Water Res. 2001 Mar;35(3):720-8 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...