Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
12058403
DOI
10.1007/bf02817664
Knihovny.cz E-resources
- MeSH
- Bacteria, Aerobic enzymology metabolism MeSH
- Benzene metabolism MeSH
- Benzene Derivatives metabolism MeSH
- Biodegradation, Environmental MeSH
- Toluene metabolism MeSH
- Hydrocarbons chemistry metabolism MeSH
- Xylenes metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Benzene MeSH
- Benzene Derivatives MeSH
- ethylbenzene MeSH Browser
- Toluene MeSH
- Hydrocarbons MeSH
- Xylenes MeSH
Several aerobic metabolic pathways for the degradation of benzene, toluene, ethylbenzene and xylene (BTEX), which are provided by two enzymic systems (dioxygenases and monooxygenases), have been identified. The monooxygenase attacks methyl or ethyl substituents of the aromatic ring, which are subsequently transformed by several oxidations to corresponding substituted pyrocatechols or phenylglyoxal, respectively. Alternatively, one oxygen atom may be first incorporated into aromatic ring while the second atom of the oxygen molecule is used for oxidation of either aromatic ring or a methyl group to corresponding pyrocatechols or protocatechuic acid, respectively. The dioxygenase attacks aromatic ring with the formation of 2-hydroxy-substituted compounds. Intermediates of the "upper" pathway are then mineralized by either ortho- or meta-ring cleavage ("lower" pathway). BTEX are relatively water-soluble and therefore they are often mineralized by indigenous microflora. Therefore, natural attenuation may be considered as a suitable way for the clean-up of BTEX contaminants from gasoline-contaminated soil and groundwater.
See more in PubMed
J Colloid Interface Sci. 2000 Sep 15;229(2):445-452 PubMed
Biodegradation. 1997;8(3):143-51 PubMed
Folia Microbiol (Praha). 2001;46(3):211-6 PubMed
J Bacteriol. 1994 Jun;176(12 ):3749-56 PubMed
Eur J Biochem. 1972 Jul 24;28(3):301-10 PubMed
Folia Microbiol (Praha). 2000;45(1):35-40 PubMed
J Bacteriol. 1974 Sep;119(3):923-9 PubMed
J Hazard Mater. 2001 Apr 20;82(3):275-89 PubMed
Appl Environ Microbiol. 1994 Jun;60(6):1914-20 PubMed
J Am Chem Soc. 1973 Jun 13;95(12):4048-9 PubMed
J Bacteriol. 1974 Sep;119(3):930-6 PubMed
Annu Rev Microbiol. 1997;51:341-73 PubMed
Biodegradation. 1999 Feb;10(1):1-13 PubMed
J Bacteriol. 1997 Jan;179(2):301-9 PubMed
J Bacteriol. 1961 Mar;81:425-30 PubMed
Appl Environ Microbiol. 1996 Sep;62(9):3101-6 PubMed
Appl Environ Microbiol. 1992 Sep;58(9):2723-9 PubMed
Biotechnol Bioeng. 1999 Mar 5;62(5):526-36 PubMed
Appl Environ Microbiol. 1996 May;62(5):1728-40 PubMed
J Bacteriol. 1989 Sep;171(9):5048-55 PubMed
J Bacteriol. 1974 Oct;120(1):416-23 PubMed
Folia Microbiol (Praha). 2001;46(3):205-9 PubMed
Appl Environ Microbiol. 1994 Aug;60(8):2802-10 PubMed
Appl Environ Microbiol. 1991 Oct;57(10):2981-5 PubMed
Biotechnol Bioeng. 1993 May;41(11):1057-65 PubMed
Biodegradation. 1997;8(4):265-73 PubMed
J Bacteriol. 1983 Jun;154(3):1356-62 PubMed
Can J Microbiol. 1968 Sep;14(9):1005-9 PubMed
Eur J Biochem. 1997 Feb 1;243(3):577-96 PubMed
Microb Ecol. 1998 Nov;36(3):349-361 PubMed
J Bacteriol. 1991 Sep;173(17):5315-27 PubMed
Biotechnol Bioeng. 1994 Aug 5;44(4):533-8 PubMed
J Bacteriol. 1991 May;173(9):3010-6 PubMed
J Biotechnol. 1999 Jan 22;67(2-3):99-112 PubMed
Lett Appl Microbiol. 1996 Oct;23(4):257-60 PubMed
Appl Microbiol Biotechnol. 2000 Jun;53(6):748-53 PubMed
FEMS Microbiol Lett. 1990 Nov;60(3):259-64 PubMed
Appl Environ Microbiol. 1993 Apr;59(4):1025-9 PubMed
Appl Environ Microbiol. 1996 Mar;62(3):1129-32 PubMed
Folia Microbiol (Praha). 2001;46(6):535-9 PubMed
J Biol Chem. 1989 Sep 5;264(25):14940-6 PubMed
J Am Chem Soc. 1973 Jun 27;95(13):4420-1 PubMed
J Bacteriol. 1975 Oct;124(1):7-13 PubMed
Appl Environ Microbiol. 1995 Aug;61(8):3185-8 PubMed
Water Res. 2001 Mar;35(3):720-8 PubMed