Biotransformation of trichloroethene by pure bacterial cultures
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
12503388
DOI
10.1007/bf02818782
Knihovny.cz E-zdroje
- MeSH
- Acinetobacter růst a vývoj izolace a purifikace metabolismus MeSH
- biodegradace MeSH
- chloridy metabolismus MeSH
- gramnegativní bakterie růst a vývoj izolace a purifikace metabolismus MeSH
- kultivační média MeSH
- látky znečišťující půdu MeSH
- mikrobiologie vody MeSH
- odpadní vody MeSH
- průmyslový odpad MeSH
- Pseudomonas putida růst a vývoj izolace a purifikace metabolismus MeSH
- sulfidy metabolismus MeSH
- trichlorethylen metabolismus MeSH
- znečištění vody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chloridy MeSH
- dimethyl sulfide MeSH Prohlížeč
- kultivační média MeSH
- látky znečišťující půdu MeSH
- odpadní vody MeSH
- průmyslový odpad MeSH
- sulfidy MeSH
- trichlorethylen MeSH
From natural samples 11 isolates able to remove trichloroethene (CCl2CHCl) from an aqueous environment were obtained which were capable of cometabolic degradation of CCl2CHCl by an enzyme system for phenol degradation. At an initial CCl2CHCl concentration of 1 mg/L, the resting cells of particular cultures degraded 33-94% CCl2CHCl during 1 d and their transformation capacity ranged from 0.3 to 3.1 mg CCl2CHCl per g organic fraction. An analysis of a mixed phenol-fed culture with an excellent trichloroethene-degrading ability found a markedly minority isolate represented in the consortium to be responsible for this property. This culture degraded CCl2CHCl even at a low inoculum concentration and attained a transformation capacity of 14.7 mg CCl2CHCl per g. The increase in chloride concentration after degradation was quantitative when compared with the decrease in organically bound chlorine. The degree of CCl2CHCl degradation was affected by Me2S2; this substance can significantly reduce the degrading ability of some tested cultures (> 60%); however, it does not cause this inhibition with others.
Zobrazit více v PubMed
Environ Sci Technol. 1987 Aug;21(8):722-36 PubMed
J Biosci Bioeng. 2000;89(5):438-45 PubMed
Appl Microbiol Biotechnol. 1996 Mar;45(1-2):248-56 PubMed
Environ Sci Technol. 1995 Jun 1;29(6):1628-37 PubMed
Appl Environ Microbiol. 1992 Sep;58(9):3038-46 PubMed
Appl Environ Microbiol. 1997 Apr;63(4):1523-30 PubMed
Chemosphere. 1997 Oct;35(7):1487-95 PubMed
Biotechnol Bioeng. 1995 Mar 5;45(5):440-9 PubMed
Biotechnol Bioeng. 1998 Jul 5;59(1):40-51 PubMed
Biochem Biophys Res Commun. 1989 Mar 15;159(2):640-3 PubMed
J Food Prot. 1997 Jan;60(1):67-71 PubMed
Appl Environ Microbiol. 1996 Aug;62(8):2953-60 PubMed
Arch Microbiol. 1992;158(1):9-13 PubMed
Appl Environ Microbiol. 1987 Jul;53(7):1541-7 PubMed
Microbiology (Reading). 1999 Jul;145 ( Pt 7):1721-1730 PubMed
Appl Environ Microbiol. 1985 Jan;49(1):242-3 PubMed
Appl Environ Microbiol. 1990 May;56(5):1279-85 PubMed